Simple Matroids
Def: Let M be a mattoid on E.

- welausday, Exercise 4: $e \in E$ is a loop if $\{e\}$ is a circuit.
- Today, Exercise l: $e, f \in E$ are parallel if $e \neq f$ and $\{e, f\}$ is a circuit.

A matroid is simple if it has no loops and no pairs of parallel edges.

Ex: $M(6)$ is simple $\Leftrightarrow G$ is a simple graph.

There is a natural simplification process matroid $M \sim$ simple matroid $\tilde{M}=\operatorname{si}(M)$ such that $\tilde{M}=M \Leftrightarrow M$ is simple.
Informally, constunct \tilde{M} from M by deleting loops and collapsing parallel elements.

More precisely, the relation on $E=E(M)$ $e \sim f \Leftrightarrow e=f$ or e and f re parallel is an equivalence relation (Ex, 1)

A non-loop equivalence class of \sim is a parallel class.

Define \tilde{M} on ground set

$$
\tilde{E}=\{\text { parallel classes of } M\}=E \backslash\{\operatorname{loops}\} / \sim
$$

and with independence defined by talking representatives:
If $P_{1}, \ldots, P_{L} \in \tilde{E}$ are distinct parallel classes and $e_{i} \in P_{i}$, then

$$
\left\{P_{1}, \ldots P_{L}\right\} \in \mathcal{I}(\tilde{M}) \Leftrightarrow\left\{e_{1}, \ldots, e_{k}\right\} \in \mathcal{I}(M) .
$$

Check: (II) - (I3) hold.
Ex $\mid(a): e \sim f$ and $I \in I(M)$ with $e \in I$

$$
\Rightarrow(I \backslash e) \cup f \in I(M)
$$

Prop: If P_{1}, \ldots, P_{k} are district parallel classes, then

$$
\left\{P_{1}, \ldots, P_{k}\right\} \text { is a flat of } \tilde{M} \Leftrightarrow P_{1} \Perp \ldots \Perp P_{k} \Perp\{\text { loops af } M\}
$$

Representable matroids
Let $A=\left\{v_{e} \mid e \in E\right\}$ be a configuration in a K-rector space V. Ten $M(A)$ is simple if and only if

- $v_{e} \neq 0$ for all $e \in E$

$$
\cdot e \neq f \Rightarrow \operatorname{span}\left(v_{e}\right) \neq \operatorname{span}\left(v_{f}\right) .
$$

If $M(A)$ is simple, then we may projectrize L :

$$
\begin{array}{ll}
V \backslash\{0\} \longrightarrow \mathbb{P V}=\{\text { lines in } v\}=v \backslash\{0\} / K^{x} \\
V \longrightarrow v]:=\operatorname{span}(v)
\end{array}
$$

Main fact: : If $W \leqq V$ subspace def. by lin forms f_{1}, \ldots, f_{k}, then $\mathbb{P W} \subseteq \mathbb{P V}$ is defined by the sine forms.

$$
\text { - } \operatorname{dim} \mathbb{P V}=\operatorname{dim} V-1
$$

points in $\mathbb{P V} \leftrightarrow 1$-din serbepuces of V
lies in $\mathbb{P V} \leftrightarrow 2 \cdot d \mathrm{dm}$ subspaces of V etc.

If $M(A)$ is simple, define $\mathbb{P A}=\left\{\left[v_{e}\right] \mid e \in E\right\}$.

Examples: A conf. in V st. $M(A)$ is simple.
WLOG assume A spans $V \Rightarrow \operatorname{rk}(M(A))=\operatorname{dim} V$

$$
=\operatorname{dim} \mathbb{P V}+1
$$

Rank 1: \qquad v

$$
\longrightarrow \quad \bullet \mathbb{P V}
$$

$A=$ one nonzero vector

$$
\mathbb{P} A=\mathbb{P V}=\text { ore point }
$$

$$
\Rightarrow M(1)=U_{1,1}
$$

Rant 2:

$A=$ frame set of paicuise lina. :indep. vectors in
$\mathbb{P A}=$ finite set of collier points a plane

$$
\Rightarrow M(A)=u_{2, n}
$$

Rank 3:
$A=$ finite set of rectus in 3-spuce s.t. each pair $\leadsto \mathbb{P A}=$ finite set of points in a projectile plane of vectors spans - plane

Convention: In $\mathbb{P A}$, only daw the hes containing $\geqslant 3$ points

Ex:

Many possibilities
$B(M(A)) \longleftrightarrow$ sets of 3 non-collivear points
$C(M(A)) \leftrightarrow$ sets of 3 collinear points
and sets of 4 points, no 3 of whin, are collinear
Rank \circ flat $=\varnothing$
Rank 1 flats \leftrightarrow points \leftrightarrow ground set
Rank 2 flats \leftrightarrow lines
Rank 3 flat $=E$
Rank 4: Similar - convention is to dane only "intestacy" ines + plies

