Geometric Representation
Last Week: Any finite subset of projective space defies a representable simple unatoid.

Ex: The Fano matroid F_{7} is the mattoid of the configuration of all 7 points in $\mathbb{P}_{F_{2}}^{2}$:

7 pts \leftrightarrow ground set \leftrightarrow rank 1 flats
7 lines $\leftrightarrow 3$ element cirenits \leftrightarrow mint 2 flats

Each pair of points collinear with a third.
$\binom{7}{3}-7=28$ bases are the sets of 3 nor-collinemr points.

More generally, we can gie a geometric representation of any simple untroid of rank ≤ 4 as a collection of
points \longleftrightarrow rank 1 flats \longleftrightarrow elements of ground set lines \leftrightarrows rank 2 flats
planes $\leftrightarrow \operatorname{rank} 3$ flats
Note: lies and planes can be "twisted"

Rules for Geometric Representations
Non-degenerncy conditions

- Every line contains at least 2 points
- Any 2 distinct points lie on a line
- Every plane contains at least 3 non-collinear points
- Any 3 distinct non-collinem points lie on a plane

In dimension 2 (one plane)

- Any 2 distinct lines meet in at most one point

In dimension 3 (more than one plane)

- Any 2 distinct lines meeting in a point do so in at most one point and lie on a common plane
- Any 2 distinct planes meeting in move than 2 points do so in a line
- Any line not lying on some plane intersects that plane in at most one point

Non-Ex: The Escher "mattoid"

- 12367 and 14567 must be planes. But they intersect in 167, chic is not a line.
- Another perspectric: 167 is independent but it cant be augmented by the langer ind. set 1246

Non -Ex:

-Taro distract lies 124 and 134 meet in 2 district points

- 14 is independent, but it canst be augmented by 123.

Non -Ex:

Exercise

Ex: The non-Fano mattoid F_{7}^{-}is the mattoid with geometric rep.

63 -pointed lies
3 2-pouted hies

Thu: F_{7} is K-representable \Leftrightarrow char $K=2$ F_{7}^{-}is K-representable \Leftrightarrow char $K \neq 2$

