Representing non-simple matroids
If M is not simple, modify the geometric rep. of \tilde{M} by
-adding loops "in a box"

- indicate parallel elements as multi-points

Ex:

$$
G=i \frac{2}{\frac{2}{3}} \prod_{4}^{j_{5}^{7}} \quad \tilde{G}=. i \frac{6}{5} \dot{j}_{4}
$$

Geometric rep. of $M(G)$:

$$
\begin{aligned}
& \text { loops } \\
& .7 .8
\end{aligned}
$$

Strong Basis Exchange
Recall: M mattoid, B its collection of bises
(B2) If $B_{1}, B_{2} \in B$ and $x \in B_{1} \backslash B_{2}$, then then exits $y \in B_{2} \backslash B_{1}$ such that $\left(B_{1} \backslash x\right) \cup_{y} \in \mathcal{B}$.

Lemma: Let M be a matruid. Ten $B=B(M)$ sutisfies
$(B 2)^{n}$ If $B_{1}, B_{2} \in B$ and $y \in B_{2} \backslash B_{1}$, then the exists $x \in B_{1} \backslash B_{2}$ such that $\left(B_{1} \backslash x\right) \cup y \in \mathcal{B}$.

Proof: $y \notin B_{1}$, so we have the fundamental circuit (Day 2 Exercise 3):

$$
C\left(y, B_{1}\right) \subseteq B_{1} \cup y .
$$

Since $C\left(y, B_{1}\right) \nsubseteq B_{2}$, there exists

$$
x \in C\left(y, B_{1}\right) \backslash B_{2} \subseteq B_{1} \backslash B_{2}
$$

Now, $C\left(y, B_{1}\right)$ is the unique circuit in $B_{1} U_{y}$, but

$$
\left(\left(y, B_{1}\right) \nsubseteq\left(B_{1} \backslash x\right) \cup y \subseteq B_{1} \cup_{y} .\right.
$$

So $\left(B_{1} \backslash x\right) \cup y$ is independent and $\left|\left(B_{1} \backslash x\right) \cup y\right|=\left|B_{1}\right|$, than $\left(B_{1} \backslash x\right) \cup y \in \mathcal{B}$.

Thu: Let M be a matwid on E. Then

$$
B^{\prime}(M)=\{E \backslash B \quad \mid B \in B(M)\}
$$

is the set of bases of a matroid on E.
Proof: Show $B^{*}(M)$ satisfies (B1) and (B2).
$(B 1): B(M) \neq \varnothing \Rightarrow B^{*}(M) \neq \varnothing$.
$(B 2)$: Let $B_{1}^{*}, B_{2}^{*} \in B^{*}(M)$, so that

$$
B_{1}^{*}=E \backslash B_{1}, \quad B_{2}^{*}=E \backslash B_{2}
$$

for some $B_{1}, B_{2} \in B(M)$.
If $x \in B_{1} \backslash B_{2}^{\alpha}=B_{2} \backslash B_{1}$, then by $^{(B 2)^{*}}$ there exists $y \in B_{1} \backslash B_{2}=B_{2}^{*} \backslash B_{1}^{*}$ such that

$$
(B, \backslash y) \cup x \in B(M)
$$

But then

$$
\begin{aligned}
E \backslash\left(\left(B_{1} \backslash y\right) \cup x\right) & =\left(E \backslash\left(B_{1} \cup x\right)\right) \cup y \\
& =\left(B_{1}{ }^{*} \backslash x\right) \cup y \in B^{*}(M) .
\end{aligned}
$$

Def: Given a mattoid M on E, the unatroid on E with bases $\beta^{*}(M)$ is called the dual matuid of M, denoted M^{*}.

$$
\text { ie. } B\left(M^{*}\right)=B^{*}(M)
$$

Ex: $\left(M^{*}\right)^{*}=M$ for any M.
Ex: $u_{r, n} *=u_{n-r, n}$
Ex: The dual of a simple mattoid reed not be simple:

$$
\begin{array}{lll}
M= & M^{*}=\underbrace{0.3}_{3} \\
B(M)=\{124,134,234\} & B^{*}(M)=\{3,2,1\}
\end{array}
$$

