

Lemma: Let M be a matroid. Then B = B(M) sufrisfies

$$(BZ)^*$$
 If $B_1, B_2 \in B$ and $y \in B_2 \setminus B_1$, then there exists
 $x \in B_1 \setminus B_2$ such that $(B_1 \setminus x) \cup y \in B$.

Proof:
$$y \notin B_{1, 50}$$
 we have the fundamental circuit
(Day Z Exercise 3):
 $C(y, B_{1}) \subseteq B_{1} \cup y$.
Since $C(y, B_{1}) \notin B_{2}$, there exists
 $x \in C(y, B_{1}) \setminus B_{2} \subseteq B_{1} \setminus B_{2}$
Now, $C(y, B_{1})$ is the unique circuit in $B_{1} \cup y$,
but
 $((y, B_{1}) \notin (B_{1} \setminus x) \cup y \subseteq B_{1} \cup y$.
So $(B_{1} \setminus x) \cup y$ is independent and $(B_{1} \setminus x) \cup y| = |B_{1}|$,
thus $(B_{1} \setminus x) \cup y \in B$.

Them: Let M be a mathemid on E. Then

$$B^{*}(M) = \{ E \setminus B \mid B \in B(M) \}$$
is the set of bases of a matroid on E.
Proof: Show $B^{*}(M)$ satisfies (B1) and (B2).
(B1): $B(M) \neq \emptyset \implies B^{*}(M) \neq \emptyset$.
(B2): Let $B_{1}^{*}, B_{2}^{*} \in B^{*}(M), \text{ so that}$
 $B_{1}^{*} = E \setminus B_{1}, B_{2}^{*} = E \setminus B_{2}$
for some $B_{1}, B_{2} \in B(M)$.
If $x \in B_{1}^{*} \setminus B_{2}^{*} = B_{2} \setminus B_{3}, \text{ then by (B2)}^{*}$
there exists $y \in B_{1} \setminus B_{2} = B_{2}^{*} \setminus B_{1}^{*}$ such that
 $(B_{1} \setminus Y) \cup x \in B(M)$.
But then
 $E \setminus ((B_{1} \setminus Y) \cup x) = (E \setminus (B_{1} \cup x)) \cup Y$
 $= (B_{1}^{*} \setminus x) \cup Y \in B^{*}(M).$

Def: Given a matroid M on E, the matroid on E with bases $\mathcal{B}^{\bullet}(M)$ is called the <u>dual matroid</u> of M, denoted M^{\bullet} . i.e. $\mathcal{B}(M^{\bullet}) = \mathcal{B}^{\bullet}(M)$

$$E_{X}: (M^{*})^{*} = M \quad \text{for any} \quad M.$$

$$E_{X}: U_{r,n}^{*} = U_{n-r,n}$$

B(M) = { 124, 134, 234} B*(M)={3,2,1}