Last time: If M is a metroid, then

$$B^{*}(M) = \{ E \setminus B \mid B \in B(M) \}$$
is the set of basics of a metroid M^{*}, the dual
of M.
rhe (M^{*}) = 1 E | - rhe (M)
Big question: What properties are preserved by duality?
Ex: M simple \Rightarrow M^{*} is simple
·Un, n is simple, but Un, = Uo, a casists of n boos.
·Un, n is simple, but Un-i, = Uo, a casists of n paullel
(if n 7,3)
Def: Members of $B^{*}(M)$ are called cobases of M.
Similarly,
circuits of M^{*} = cocinenits of M = Z^{*}(M)
independent sets of M^{*} = cocinepties of M = X^{*}(M)
Hyperplanes of M^{*} = cochapperplanes of M = X^{*}(M)

Proof: ① X ∈ I(M) (=)] B ∈ B(M) s.t. X ⊆ B (=)] B ∈ B(M) s.t. E\X ⊇ E\B (=)] B* ∈ B*(M) s.t. E\X ⊇ B* (=) E\X spans M*.

(2) is (1) applied to M*.

(3) X ∈) + (M) ⇐) X is non-spanning in M, but XUE spans M for every eEEX.
(2) EXX ∉ I⁴(M), but EX(XUE) = (EX) + E ∈ I⁴(M) for every e ∈ EXX.
(2) EXX ∈ C⁴(M).

(4) is (3) applied to Mª.

Ð

Τ

$$E_X: M(K_S)^* \text{ is not graphic.}$$
Suppose $M(K_S)^* \cong M(G)$. $Mlog, G \text{ is connected}$
 $(Friday Exercise 1)$
 $rk(M(K_S)) = |V(K_S)| - 1 = 4$
and $|E(K_S)| = 10$.
 $\Rightarrow M(K_S)^* \text{ is a rank } 10 - 4 = 6$ instroid on 10 elements.
So G has 10 edges and 7 vertices
 $\Rightarrow G$ has a untex of valence 62
 $[only have 20 edge ends to distribute emang 7 vertices]
 $\Rightarrow G$ has a contact of size ≤ 2
 $\Rightarrow M(G)^* = M(K_S)$ has a circuit of size ≤ 2
This is false, so an such G exists.
Con: $M(K_S)$ is not cographic
 $G: M(K_S)$ is not cographic$

Ex:
$$U_{n-1,n} = M\left(\begin{array}{c} \ddots & \ddots \\ \ddots & \ddots \end{array}\right)$$
 So $U_{n-1,n}$ and $U_{1,n}$
 $U_{n-1,n} = U_{1,n} = M\left(\begin{array}{c} \ddots \\ \vdots \end{array}\right)$ are in the overlap.