Last time: If M is a mattoid, then

$$
B^{*}(M)=\{E \backslash B \mid B \in B(M)\}
$$

is the set of buses of a matroid M^{*}, the dual of M.

$$
r k\left(M^{*}\right)=|E|-r k(M)
$$

Big question: what properties are preserved by duality?
Ex: M simple $\nRightarrow M^{*}$ is simple

- $u_{n, n}$ is simple, but $u_{n, n}^{n}=u_{0, n}$ cassis of n loops.
- $U_{n-1, n} \begin{aligned} & \text { " } \operatorname{simple}_{\text {(if } n \geqslant 3)},\end{aligned}$ but $u_{n-1, n}^{*}=u_{1, n} \begin{aligned} & \text { consists of } n \text { parallel } \\ & \text { elements. }\end{aligned}$

Def: Members of $\mathbb{B}^{(2}(M)$ are called cobases of M.
Similarly,
circuits of $M^{*}=$ cocincnits of $M=C^{a}(M)$
independent sets of $M^{N}=$ coindependent sets of $M=I^{a}(M)$
hyperplanes of $M^{*}=$ colygerplares of $M=r t^{*}(M)$

Ex: $e^{i s}$ a loop in M

$$
\Leftrightarrow e \text { is a collop in } M^{*}
$$

(e is in no banes)
(e is in every basis)

Prop: Let M be a matroid on $E, X \subseteq E$.
(1) X is independent $\Leftrightarrow E \backslash X$ is cospanning
(2) X is spanning $\Leftrightarrow E \backslash X$ is coindependent
(3) X is a hyperplane $\Leftrightarrow E \backslash X$ is a cocircuit
(4) X is a circnit $\Leftrightarrow E \backslash X$ is a colyperplane

Proof: (1) $x \in I(M) \Leftrightarrow \exists B \in B(M)$ s.t. $x \subseteq B$

$$
\begin{aligned}
& \Leftrightarrow \exists B \in B(M) \text { s.t. } E \backslash X \supseteq E \backslash B \\
& \Leftrightarrow \exists B^{*} \in \mathbb{B}^{*}(M) \text { s.t. } E \backslash X \supseteq B^{*}
\end{aligned}
$$

\Leftrightarrow E\X spans M^{*}.
(2) is (1) applied to M^{*}.
(3) $X \in \mathcal{H}(M) \Leftrightarrow X$ in non-spanning in M, but X Ue spans M for erery $e \in E \backslash X$.

$$
\begin{aligned}
& \stackrel{(2)}{\Rightarrow} E \backslash X \notin \mathcal{I}^{*}(M) \text {, but } \\
& \\
& E \backslash(X \cup e)=(E \backslash X) \backslash e \in \mathcal{I}^{*}(M)
\end{aligned}
$$

for eveng $e \in E \backslash X$.

$$
\Leftrightarrow E \backslash x \in \mathcal{C}^{*}(M)
$$

(4) is (3) applied to M^{*}.

Cor: Let E be a finite set and $t \subseteq 2^{E}$. Then $H=H(M)$ for some matroid M on E if and only if $) t$
(HI) $E \notin) t$.
$\left(H_{2}\right)$ If $H_{1}, H_{2} \in H$ with $H_{1} \subseteq H_{2}$, then $H_{1}=H_{2}$.
$(H 3)$ If $\left.H_{1}, H_{2} \in\right) t, H_{1} \neq H_{2}$, and $e \in E \backslash\left(H_{1} \cup H_{2}\right)$, then the ne exist $H \in \mathcal{H}$ with

$$
\left(H_{1} \cap H_{2}\right) \cup e \subseteq H .
$$

Ex: (Friday Exercise \#3)
If G is a graph, then

$$
\tau^{*}(M(G))=\{X \subseteq E(G) \mid X \text { is a outset }\}
$$

miminall set of edges whore conn. components the $\#$ of conn. comp moments

Thus, $M(G)^{\text {n }}$ is sometimes called the cutset matroid or bond matroid of G (as opposed to the cycle matwid $M(0)$).

A mattoid isomorphic to $M(G)^{\text {th }}$ for sone G is culled a cographic mattoid.

Ex: $M\left(K_{5}\right)^{*}$ is not graphic.
Suppose $M\left(K_{S}\right)^{*} \cong M(G)$. LOG, G is connected (Friday Excise 1)

$$
r k\left(M\left(k_{5}\right)\right)=\left|V\left(k_{5}\right)\right|-1=4
$$

and $\left|E\left(K_{s}\right)\right|=10$.
$\Rightarrow M\left(K_{5}\right)^{n}$ is a rank $10-4=6$ mattoid on 10 elements.

So G has 10 edges and 7 vertices
$\Rightarrow G$ has a vertex of valence ≤ 2
[only hare 20 edge ends to distribute among 7 vestries]
$\Rightarrow G$ hus a corset of size ≤ 2
$\Rightarrow M(G)^{\prime}=M\left(K_{5}\right)$ has a circuit of size ≤ 2
This is false, so no such G exists.
Cor: $M\left(K_{s}\right)$ is not cographic
Q: What is the overlap

Ex: $u_{n-1, n}=M\left(\begin{array}{cc}\cdots & i \\ \vdots & i\end{array}\right)$
So $u_{n-1, n}$ and $u_{1, n}$

$$
u_{n-1, n}=u_{1, n}=M\left(\cdot \sum^{n} \cdot\right)
$$

are in the overlap.

Thu (Whitney 1932): $M(G)$ is cogmphic $\Leftrightarrow G$ is a planar graph.

