Duals of representable matroids
Let $A=\{$ vel $e \in E\}$ be a configuration in a K-vector space V. WLOG assume A spans V.

Naive duality: Dualize $V \leadsto V^{*}$
$A \leadsto$ arrangereat of hyperplanes in V^{*}
This is just another manifestation of $M(A)$. [Exercise 1]
Instead: Let $\left\{\delta_{e} \mid e \in E\right\}$ be the standard basis of K^{E}. We have a short exact sequence

$$
\begin{aligned}
& 0 \rightarrow W K^{E} \longrightarrow V \rightarrow 0 \\
& \delta_{e} \longmapsto v_{e}
\end{aligned}
$$

wee $W=\operatorname{ker}\left(K^{E} \rightarrow V\right)$.
Now dualize:

$$
\begin{gathered}
0 \longleftarrow w^{*} \longleftarrow\left(K^{E}\right)^{k} \longleftarrow(V)^{*} \leftarrow 0 \\
g_{e} \longleftarrow \delta_{e}^{*}
\end{gathered}
$$

This gives a confirmation $\mathcal{A}^{\prime}=\left\{g_{e} \mid e \in E\right\}$ in ω^{*}, culled the Gale dual of t.

Thu: Let $X \subseteq E$. Then
$\left\{v_{e} \mid e \in X\right\}$ is in. indy. in $V \Longleftrightarrow\left\{g_{e} \mid e \in E X X\right\}$ spas W^{*}

Cor: $\left\{v_{e} \mid e \in X\right\}$ is . basis of $V \Leftrightarrow\left\{g_{e} \mid e \in E \backslash X\right\}$ is abases ${ }^{\circ}$ of w^{*}.

Cor: M is K-representable $\Leftrightarrow M^{k}$ is K-representable.
Proof: $M(A)^{N}=M\left(A^{\prime}\right)$ by above corollary.
See Exercise 2.

Note: In coordinates, let A be the columns of

$$
\begin{gathered}
A=\left[v_{1}\left|v_{2}\right| \cdots \mid v_{n}\right] . \\
0 \rightarrow W
\end{gathered} K^{E} \xrightarrow{A} V \rightarrow 0
$$

- Row ops + col scaling + col swapping (change of basis) $A \leadsto\left[I_{r} \mid B\right]$ which has the some morton as A
- Then M^{*} is the matin of column vectors of $\left[I_{n-r} \mid-B^{\top}\right]$.
- $\operatorname{Rowspace}\left(\left[I_{r} \mid B\right]\right)=\operatorname{Rowspace}\left(\left[I_{n-r} \mid-B^{\top}\right]\right)^{\perp}$

$$
V^{*}=w^{\perp}
$$

as subspaces of $K^{E} \cong\left(K^{E}\right)^{a}$

Ex: $A=\left[\begin{array}{llll}1 & 0 & 1 & 2 \\ 0 & 1 & 2 & 2\end{array}\right]$

$$
V \approx k^{2}
$$

$$
\left[\begin{array}{cc}
1 & 0 \\
1 & 0 \\
-1 & 2 \\
0 & -1
\end{array}\right] \quad v_{1}+v_{2}-v_{3}=0.12 v_{3}-v_{4}=0
$$

$M(A)^{n}$ is the unatroid of the configuration

g_{3}°

$$
\begin{aligned}
& H_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]^{1} \\
& H_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]^{1} \\
& H_{3}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]^{1} \\
& H_{4}=\left[\begin{array}{l}
2 \\
2
\end{array}\right]^{1}
\end{aligned}
$$

Embeds $V^{N} \cong K^{2}$ into K^{4}

+ He interaction of $V^{\prime \prime}-1$ coordinate hyperplanes gives a line arrongerenent in V^{*}

