Duals of representable matroids
Let
$$A = \{ve \mid e \in E\}$$
 be a configuration in a K-vector space V.
WLOG assume A spans V.
Noire duality: Dualize $V \rightarrow V^*$
 $A \rightarrow arrangenet$ of hyperplanes in V^*
This is just another manifestation of $M(A)$. [Exercise I]
Instead: Let $\{S_e \mid e \in E\}$ be the standard busis of K^E .
We have a short exact sequence
 $O \rightarrow W \longrightarrow K^E \rightarrow V \rightarrow O$
 $S_E \rightarrow V_E$
where $W = \ker(K^E \rightarrow V)$.
Now dualize:
 $O \leftarrow W^* \leftarrow (K^E)^* \leftarrow (V)^* \leftarrow O$
 $g_E \leftarrow S_E^*$
This gives a configuration $A' = \{g_e \mid e \in E\}$ in W^* ,
called the Gale dual of A .
Thum: Let $X \subseteq E$. Then
 $\{ve \mid e \in X\}$ is line indep. in $V \iff \{g_e \mid e \in EX\}$ spans W^*

Cor: ÉveleeX3 is a basis of V (2) ÉgeleEX3 is abasis
of W*.
Cor: M is K-representable (2) M* is K-representable.
Proof: M(A)* = M(A') by above corollary.
See Exercise Z.
Mote: In coordinates, let & be the columns of
$$A = [V_1|V_1| \cdots |V_n]$$
.
 $O \rightarrow W \rightarrow K^E \xrightarrow{A} V \rightarrow O$
• Row ops + col scaling + col swapping (change of basis)
 $A \rightarrow [Ir | B]$ which has the same introd as A
• Then M* is the matorial of column vectors of
 $[I_{n-r} | -BT]$.

Rowspace ([Ir 1B]) = Rowspace ([In-r 1-BT])¹
 V^a = W¹
 as subspaces of K^E = (K^E)^a

M(A) is the matroid of the configuration $\mathcal{W}^{\bigstar} \stackrel{[!!!]}{\leftarrow} \mathcal{V}^{\bigstar}$ Embeds VM = K2 into K4 93 94 • 91=92 + the intersection of Va of coordinate hyperplanes gives a line annyement $\left| \mathbf{f} \right| = \begin{bmatrix} \mathbf{o} \end{bmatrix}^{\perp}$ $H_{z} = [\hat{e}]^{\perp}$ $H_3 = [1]^{\perp}$ $H_{y} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}^{L}$