Wednesday Exercise 3:
Thm: Let E be a finite set and
$$F \subseteq 2^E$$
. Then
 $J = F(M)$ for some method M on E if and
only if
(F1) $E \in F$
(F2) If $F_1, F_2 \in F_1$ then $F_1 \cap F_2 \in F_2$.
(F3) If $F \in F$ and $G_1, \dots, G_k \in F$ are the
members of F which cover F_1 then
 $E \setminus F = E \setminus G_1 \amalg \dots \amalg E \setminus G_k$
 G covers F if $F \notin G$ and if
 $F \in H \subseteq G$ for $H \in F_1$ then $H = F$ or $H = G_2$.
Notation: $F \subseteq G$

We'll partially order
$$F(M)$$
 by inclusion
(A poset is a set P with partially defined
order \leq which is
reflexive $(x \leq x \forall x \in P)$
antisymmetric $(x \leq y \text{ and } y \leq x \Rightarrow x = y)$
transitive $(x \leq y \text{ and } y \leq x \Rightarrow x \in z)$
(all this poset $Z(M)$.

Def: Let P be a poset. An element
$$Z \in P$$
 is a zero
if $Z \leq x$ for all $x \in P$. If it exists, it is unique
and denoted Op.
Similarly, a one is the (unique if it exists) element
 $1_{p} \in P$ such that $x \leq 1_{p}$ for all $x \in P$.

Ex: In a finite lattice 1,
$$O_{1} = \bigwedge_{x \in 1} x$$

 $1_{y} = \bigvee_{x \in 1} x$

Ex: In I(M), the zero is $c|(\emptyset) = \xi \log s \xi$ and the one is the ground set E. In a poset, a chain from x to y is a sequence $x = X_{0} - X_{1} - X_{2} - X_{k} = y.$ Its length :s k, and it is maximal if Xi-1 K· X; for all i. In a poset with O, the height h(x) of x is the length of the longest chain from 0 to X. An element is an atom if it has height 1 lie. an atom covers 0). Lemma: Let M be a matroid. () Every flat F is a join of atoms. 3 If FSG are flats, then every maximal chain from F to G has length rk(G) - rk(F).

Thum: A lattice is geometric if and only if it is the lattice of flats of a matroid. Proof (shetch): (E) (=) Trivial case: $L = \cdot = L(U_{0,0})$ Else, set E = Eatoms of L3 and show $rk: 2^E \longrightarrow \mathbb{Z}$ $X \longmapsto h\left(\bigvee_{x \in X} x\right)$ satisfies (RI) - (R3), so it is the mul function of a metroid M on E. Last step: $1(M) \cong 1$.

 $\operatorname{Cor}: \mathcal{I}(\mathsf{M}_1) \cong \mathcal{I}(\mathsf{M}_2) \iff \widetilde{\mathsf{M}}_1 \cong \widetilde{\mathsf{M}}_2.$