The lattice of flats

Wednesday Exercise 3:
Thu: Let E be a finite set and $\mathcal{F} \subseteq 2^{E}$. Then $F=F(M)$ for some matwid M on E if and only if
$(F \mid) \quad E \in F$
(F_{2}) If $F_{1}, F_{2} \in F$, then $F_{1} \cap F_{2} \in F$.
(F3) If $F \in F$ and $G_{1}, \ldots, G_{h} \in F$ are the members of F which cover F, then

$$
E \backslash F=E \backslash G \perp \Perp \nexists E \backslash G_{k}
$$

G covers F if $F \leftarrow G$ and if $F \subseteq H \subseteq G$ for $H \in F$, then $H=F$ or $H=G$.
Notation: $F \subset G$

We'll partially order $F(M)$ by inclusion A pose is a set P with partially defined order \leq which is

- reflexive $(x \leq x \quad \forall x \in P)$
- antisymmetric $(x \leq y$ and $y \leqslant x \Rightarrow x=y)$
-transitive $(x \leqslant y$ and $y \leqslant z \Rightarrow x \leqslant z)$
Call this pose $\mathcal{L}(M)$.

Visualize $\mathcal{L}(M)$ (or any posit) by doming its
tasse dingarm:

- vertices $=$ flats
- draw an edge from F up to flat G if $F \subset G$

Ex: The poses of subsets of $\{1,2,3\}$

$$
=\mathcal{L}\left(u_{3,3}\right)
$$

without the labels
(but re usually duma the In tels)

A lattice is a posed \mathcal{L} such that for all $x, y \in \mathcal{L}$ there exists $x \vee y \in \mathcal{L}$ satisfying

$$
\text { - } x \vee y \geqslant x \text { and } x \vee y \geqslant y
$$

- if $z \geqslant x$ and $z \geqslant y$, then $z \geqslant x v y$
and there exists $x \wedge y \in \mathcal{L}$ satisfying

$$
\text { . } x a y \leq x \text { and } x \wedge y \leq y
$$

- if $z \leq x$ and $z \leq y$, then $z \leq x \wedge y$.
$x \vee y$ is the join, or least upper bound, of x and y. $x \wedge y$ is the meet, or greatest lower bound, -

Ex: Not all poets ane lattices

Lemma: $\mathcal{L}(M)$ is a lattice, via

$$
F \vee G=c l(F \cup G) \text { and } F \wedge G=F \cap G
$$

Proof: The only nontrivial part is showing $F \cap G$ is a flat, which is (F2).

Def: Let P be a posit. An element $z \in P$ is a zeno if $z \leq x$ for all $x \in P$. If it exists, it is unique and denoted O_{p}.
Similarly, a one is the (unique if it exists) element $1_{P} \in P$ such that $x \leq 1_{P}$ for all $x \in P$.

Ex: In a finite lattice $\mathcal{L}, O_{\mathcal{L}}=\wedge_{x \in \mathcal{L}} x$

$$
1_{y}=V_{x \in \mathcal{Y}} x
$$

Ex: In $\mathcal{L}(M)$, the zeno is

$$
c \mid(\phi)=\left\{\operatorname{loop}_{5}\right\} .
$$

and the one is the ground set E.
In a posed, a chain from x to y is a sequence

$$
x=x_{0}<x_{1}<x_{2}<\cdots<x_{k}=y .
$$

Its length is k, and it is maximal if $x_{i-1}<x_{i}$ for all i.

In a posed with 0 , the height $h(x)$ of x is the length of the longest chain from 0 to x. An element is an atom if it has height 1 lie. an atom covers 0).

Lemma: Let M be a mattoid.
(1) Every flat F is a join of atoms.
(2) If $F \subseteq G$ are flats, then every maximal chain from F to G has length $r k(G)-r k(F)$.

Proof: Exercise 2, Wednesday.

Ex: The following is not $\mathcal{L}(M)$ for any M :

Cor: The height function on $\mathcal{L}(M)$ is $r k_{M}$.
Def: A lattice \mathcal{L} is geometric if

- \mathcal{I} is finite
- \mathcal{L} is atomic: each $x \in \mathcal{1}$ is the join of atoms
- the height function of \mathcal{L} is submodular:

$$
h(x \vee y)+h(x \wedge y) \leq h(x)+h(y) .
$$

. \mathcal{L} has the Jordan-Dedekind property: if $x<y$ in $\mathcal{1}$, then every maximal chain from x to y has the same length.

The: A lattice is geometric if and only if it is the lattice of slats of a matroid.

Proof (sketch): (\Leftrightarrow)
(\Rightarrow) Trivial case: $\mathcal{L}=\cdots=\mathcal{L}\left(u_{0,0}\right)$
Else, set $E=\{$ atoms of $\mathcal{L}\}$ and show

$$
\begin{aligned}
r k: 2^{E} & \longrightarrow \mathbb{Z} \\
X & \longmapsto h\left(V_{x \in X} \times\right)
\end{aligned}
$$

satisfies $(R 1)-(R 3)$, so it is the cant function of a matroid M on E_{1}

Last step: $\mathcal{L}(M) \cong \mathcal{L}$.
Cor: $\mathcal{L}\left(M_{1}\right) \cong \mathcal{L}\left(M_{2}\right) \Leftrightarrow \widetilde{M}_{1} \cong \widetilde{M}_{2}$.

