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Def A lattice L is geometric if

L is finite
L is atomic each x c L is a joinof atoms
the height function of L is submodylar

h xvy th x ry thx thly

L has the SondanDedekindpropent if XY in L
then
any

maximal chain from toy hasthe same length

Them A lattice is geometric if and only if it is the
lattice of flats of a matroid

we now have 3 unfortunately similar ways
to

draw a matroid Mi

as a graph if M isgraphic

geometric representation if rk M a 4

the lattice of flats
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Them Let M be a matroid and FeFCM If

crk F rk M rkCF k

then thee exist hyperplanes H Hu cHCM

such that
f Hi

That is LCM is coatomic

Proof Induct on k 6 0 is trivial E emptyinksecto

If k71 choose e c Elf Then Cl Fue is a

flat covering F Thus

rh cleve rk F I rum h I

rum h l

i e d Fue has conank L l

let Hi Hu cHCM be hyperplanes with

c ICF ve II Hi
Now there exists HheHCM with

F E Hu E Ele



Why F E Ele is non spanning so it is contained in

a maximal non spanning
subset of Ele

Now

d Fue Hi 2 Hi ZF
U ye e

But these are all flats and d Fuel covers F

So F Hi

Flatsandduality

Er F is a flat of a matroid M if andonly
if ELF is a union of cocircuits

Proof F c FCM F Hi each Hiett M

Elf El Iti each ElHi cEMM

B


