Last time: M matroid on E, TEE. Deletion: MIT, matroid on EIT with rhmit (S) = rhm (S) for all SEELT (Equivalently, if X=ENT, the MNT=MIX is the] restriction of M to X. Contraction: M/T = (M* \T)*, matroid on E \T with rkm/T(S) = rkm (SUT) - rkm (T) for all SEENT. Basic Properties If T, T2 SE are disjoint, Hen $\cdot (M \setminus T_1) \setminus T_2 = M \setminus (T_1 \cup T_2) = (M \setminus T_2) \setminus T_1$ $= M / (T, UT_2) = (M / T_2) / T_1$ $\cdot (M/T_1)/T_2$ $=(M \setminus T_2) / T_1$ $\cdot (M/T_1) \setminus T_2$ =) any sequence of deletions and contractions can be written as $M/T_1 \setminus T_2$ Def: A matroid of the form M/TINTz (TINTZ = Ø) is called a minor of M.

$$E_{X}: Let T \leq [n] with |T| = h. Then
U_{r,n} |T = \begin{cases} U_{r,n-h} & \text{if } h \leq n-r \pmod{(1 \in NT > r)} \\ U_{n-h,n-h} & \text{if } n-r \leq h \leq n \pmod{(2 \times r + n + h)} \end{cases}$$
and

$$U_{r,n} /T = \begin{cases} U_{r-h,n-h} & \text{if } h \leq r + (1 \in NT + n + h) + (1 \in NT + n + h) + (1 \in NT + n + h) + (1 \in NT + h) + (1 = NT + h)$$

M	Excluded Minors	Proof
Gmphic	$U_{2,4}, F_{7}, F_{7}, M(K_{5}), M(K_{3,3})$	Tn#e 1959
Cogmphic	$U_{2,4}, F_{7}, F_{7}, M(K_{5}), M(K_{3,3})$	Tatte 1959
Regular	U2,4, F, F,	Jutte 1958
Fz-repible	$U_{z,4}$	Tutte 1958
Fz-rep'ble	U _{2,5} , U _{3,5} , F ₇ , F ₇ *	Bixby/Seymonr (independently) 1979
Fy-rep'ble	Uz, , Uy, , F, , (F,)*, 3 others	Geelen-Gerards-Kapoor 2000
IFE - repible q≥s	Conjecturally finitely many (Rota)	Geelen-Gemrds-Whiltle annonneed 2013
K-repible chark=0	Infinitely many	Lazarson 1958

