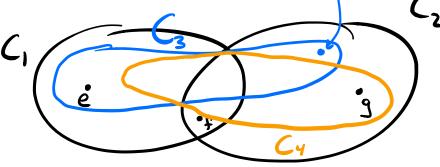
Connectivity
How can we tell when a method has a nontrivial
direct sum decomposition?
Lecture 4, Exercise 3:
M a motion on E.
(a)
$$C \in C(M) \iff C \subseteq E$$
 is a minimal non-empty set satisfying
 $e \in cl(C \setminus e)$ for every $e \in C$.
(b) If $X \subseteq E$, then $cl(X) = X \cup \{e \in E \mid \exists C \land C \ with e \in C \in X \cup e\}$
An application:
Them: Let M be a matroid and $C = C(M)$ its set
of circuits. Then C satisfies
(C3)' If $C_{1}, C_{2} \in C$ with $e \in C_{1} \cap C_{2}$ and $f \in C_{1} \cap C_{2}$
[strong circuit then there is $C \in C$ with
 $e timination$]

Cor:
$$C \subseteq 2^E$$
 satisfies the circuit axioms (C1) - (C3)
if and only if it satisfies (C1), (C2), and (C3)'.

Proof: By (a),
$$e \in cl(C_2 \setminus e)$$
. So
 $C_2 \setminus e \subseteq (C_1 \cup C_2) \setminus \{e, f\}$
implies $e \in cl((C_1 \cup C_2) \setminus \{e, f\})$ by $(C \perp 2)$.
Thus,
 $cl((C_1 \cup C_2) \setminus \{e, f\}) = cl((C_1 \cup C_2) \setminus f)$
Why? $e \in cl(X) \Rightarrow cl(X) = cl(X \cup e)$ by $(L \mid 2) \cdot (C \mid 3)$.
Now,
 $f \in cl(C_1 \setminus f) \subseteq cl((C_1 \cup C_2) \setminus f) = cl((L_1 \cup C_2) \setminus [e \mid 5))$.
Now,
 $f \in cl(C_1 \setminus f) \subseteq cl((C_1 \cup C_2) \setminus f) = cl((L_1 \cup C_2) \setminus [e \mid 5))$.
So by (b), there is a circuit $C \in C$ such
that
 $f \in C \subseteq (C_1 \cup C_2) \setminus e$.
Let M be a method on E.
Define an equivalence velation \sim on E by
 $e \sim f \iff e = f$ or $\{e, f\} \subseteq C$ for some
 $C \in T(M)$

Proof of transitivity: Suppose e, f, g are distinct with erf and frg. There exist C, C2 C (M) with $C_1 \ge \{e, f\}$ $C_2 \geq \xi f, q$ If gel, or etl, then were done. Otherwise, C, ZCz. Strong circuit elimination gives a circuit C3 with $e \in C_3 \subseteq (C, UC_2) \setminus f$. If geC3, ve're done. Othernise, since C3 & C1, there is $x \in (C_2 \cap C_3) \setminus C_1.$



By strong circuit elimination, there is a circuit Cy
with

$$g \in C_{4} \subseteq (C_{2} \cup C_{3}) \setminus X$$

If $e \in C_{4}$, which done.
Otherwise,
 $\cdot C_{1} \cap C_{4} \supseteq (C_{3} \setminus C_{2}) \cap C_{4} \neq \emptyset$
 $elie C_{4} \subseteq C_{4} \cup C_{2} \setminus X$
 $\Rightarrow |C_{1} \cup C_{4}| \leq |C_{1} \cup C_{2}|$
Now, repeat this process starting with C, and Cy.
At some point, we produce a circuit C with e, g \in C,
because $|C_{1} \cup C_{2k}|$ can't decrease to 0. So eng.
Def: The n - equivalence classes are called connected
 $f = 1$ and $f = 1$

components of M. M is <u>connected</u> it it has only one component. Otherwise, it is disconnected.

