Last time:

$$
\begin{aligned}
x_{M}(q) & =0 & & \text { if } M \text { has a loop } \\
x_{M}(q) & =(q-1) x_{\text {MMe }}(q) . & & \text { if } e \text { is a collop } \\
& =(q-1) x_{\text {MMe }}(q) . & & \text { if } e \text { is not a loop } \\
x_{M}(q) & =x_{\text {Me }}(q)-x_{\text {Mlle }}(q) . & & \text { or a clop }
\end{aligned}
$$

Def: The chromatic polynomial of a graph G is the function

$$
c h r_{G}: \mathbb{Z}_{\geqslant 0} \longrightarrow \mathbb{Z}_{\geqslant 0}
$$

$$
q \longmapsto \# \text { of proper } q \text {-colorings of } G
$$

Covertices colored with sq colors st. adjacent vertices have different colors

Ex: If T is a tree on n vertices, then

$$
\operatorname{ch} r_{T}(q)=q(q-1)^{n-1}
$$

Proof: Remover a leaf , induct.

Ex: K_{n} complete graph on n vertices, then

$$
\operatorname{chr}_{k_{a}}(q)=q(q-1)(q-2) \cdots(q-n+1)
$$

Ex: $c h r_{G}(q)$ does not depend only on $M(G)$.

$$
\begin{array}{ll}
G_{1}=\underbrace{\left(q_{2}\right.}_{q_{(q-1)}^{(q-1)}}=e_{q}^{(q-1)} \cdot \underbrace{}_{(q-1)} \\
M\left(G_{1}\right)=U_{2,2} & M\left(G_{2}\right)=U_{2,2} \\
\operatorname{chr}_{G_{1}}(q)=q(q-1)^{2} & \operatorname{chr}_{G_{2}}(q)=q^{2}(q-1)^{2}
\end{array}
$$

Thu: $\operatorname{chr}_{G}(q)=q^{c} x_{M(s)}(q)$, where c is the number of connected components.

Proof: If G has a loop edge, then $\operatorname{chr}_{G}(q)=0$ and $x_{m(0)}(q)=0$.
If edges e and f are parallel in G, then $c h r_{G}(q)=c h r_{G \backslash e}(q)$, and $x_{M(0)}(q)=x_{M(G) e}(q)$.

So we may assume G is simple.
If $E(G)=\varnothing$ then $M(G)=U_{0,0}$ and $\operatorname{chr}_{G}(q)=q^{|v(6)|}=q^{N(0) \mid} \underbrace{X_{u_{0,}}(q)}_{=1}$.

Otherwise, let $e \in E(6)$. Then

Picture:

If e is not a coloop (isthmus/cut edge), then G, Gee, and G/e all hare the same number of conn. components. So by induction on $|E(G)|$,

$$
\begin{aligned}
\operatorname{chr_{G}}(q) & =q^{c} x_{M(G) \backslash e}(q)-q^{c} x_{M(G) / e}(q) \\
& =q^{c} X_{M(G)}(q)
\end{aligned}
$$

by the deletion-contaction formula for $x_{M(6)}$.

If e is a coloop, then G le has one move component than G and G / e. So

$$
\begin{aligned}
& \operatorname{chr}_{G}(q)=q^{c+1} X_{M(6) \backslash e}(q)-q^{c} x_{M(0) / e}(q) \\
& =q^{c}\left(q x_{\text {M(}) \times e(q)}-x_{\text {M(}) / e}(q)\right) \\
& =q^{c}(q-1) x_{\text {m(} \sigma) \ e}(q) \\
& =q^{(} x_{\mu(G)}(q) \text {. } \\
& \text { eff eta } \\
& \text { lap a- color }
\end{aligned}
$$

Cor: F_{7} is not graphic
Proof: $\quad q^{c} x_{F_{2}}(q)=q^{c}\left(q^{3}-7 q^{2}+1 q_{q}-8\right)$

$$
=q^{\prime}(q-1)(q-2)(q-4)
$$

and this cannot be the chromatic polynomial of a graph.

$$
c h_{r_{G}}(q)=q^{c}(q-1)(q-2) \cdots(q-k+1) \text { : whacill cater? }
$$

