Let M be a matroid, $r=r k(M)$. Then

$$
\begin{aligned}
x_{M}(q) & =\sum_{S \leq E}(-1)^{|s|} q^{\operatorname{crk}(s)} \\
& =\omega_{0} q^{r}+w_{1} q^{r-1}+\cdots+w_{r-1} q+w_{r}
\end{aligned}
$$

The coefficients $w_{i}=w_{i}(M)$ are the Whitney numbers of the first hind.

Conjecture 1: For $0 \leq i \leq r, \quad(-1)^{i} \omega_{i}>0$.
Lecture 21, Exercise 2 - prove this using deletioncontraction formula.

Conjecture 2: The unsigned Whitney numbers of the first hind $\left|w_{i}\right|=(-1)^{i} \omega_{i}$ are unimodal:

$$
\left|w_{0}\right| \leq\left|w_{1}\right| \leq \cdots \leq\left|w_{k-1}\right| \leq\left|w_{k}\right| \geqslant\left|w_{k+1}\right| \geq \cdots \geq\left|w_{r}\right| .
$$

This mould follow from the stronger property of log-concarity: $\quad\left|\omega_{i}\right|^{2} \geqslant\left|\omega_{i-1}\right| \cdot\left|\omega_{i+1}\right|$.

This was conjectured by Rota-Heron-Welsh in the 70s (Rend conjectured it for chromatic polynomials), and proved by

Hah (2010)
Hah-Katz (2011)
Adipmaito-Hahh-Katz (2015) M arbitany

Key den: New perspective on x_{μ} inspired by geometry.

A condensed formula for X_{M}
We have

$$
x_{M}(q)=\sum_{s \leq E}(-1)^{|s|} q^{c r b(s)}
$$

Since $\operatorname{rk}(s)=\operatorname{rk}(d(s)) \Leftrightarrow \operatorname{crk}(s)=\operatorname{crk}(d(s))$ we have

$$
\begin{aligned}
x_{m}(q) & =\sum_{F \in F(m)}\left(\sum_{\substack{s \leq F \\
U(s)=F}}(-1)^{|s|}\right) q^{\operatorname{crk}(s)} \\
& =U_{F} \\
& =\sum_{F \in f(m)} U_{F} q^{\operatorname{crh}(F)}
\end{aligned}
$$

Lemma: If M has loops, then $U_{F}=0$ for all $F \in F(M)$. Otherwise, $u_{\phi}=1$ and

$$
U_{F}=-\sum_{\substack{G \in F(M) \\ G \nsubseteq F}} U_{G}
$$

for every nonempty flat F.

Proof: If e is a loop, $d(S)=c l(s u e)$ for event $S \subseteq E \backslash e$. So for any flat F,

$$
\begin{aligned}
U_{F}=\sum_{\substack{S \subseteq F \\
d(s)=F}}(-1)^{1 s 1} & =\sum_{\substack{S \subseteq F i e \\
c l(s)=F}}(-1)^{1 s 1}+\sum_{\substack{S \leq F 1 e \\
c \mid(s)=F}}(-1)^{\text {sued }} \\
& =0 .
\end{aligned}
$$

Othemise, M is loopless and $U_{\phi}=(-1)^{|\phi|}=1$.
If F is a nonempty flat, then

$$
\begin{aligned}
& \sum_{\substack{G \in F(M) \\
G \subseteq F}} U_{G}=\sum_{\substack{G \in F(M) \\
G \subseteq F}} \sum_{\substack{S \leq G \\
d(s)=G}}(-1)^{|s|} \\
&=\sum_{S \subseteq F}(-1)^{|s|} \quad \begin{array}{c}
S \leq F \\
\\
\\
\end{array} \quad \begin{array}{l}
s(s) \leq F
\end{array} \\
&
\end{aligned}
$$

More generally, we define the Möbins function of a poet ρ to be the unique function

$$
\mu_{p}: \rho \times \rho \rightarrow \mathbb{Z}
$$

Satisfying

$$
\begin{array}{ll}
\cdot \mu_{p}(x, x)=1 & \text { for all } x \in \rho \\
\cdot \mu_{p}(x, y)=0 & \text { if } x \notin y \\
\cdot \sum_{x \leq z \leq y} \mu_{p}(x, z)=0 & \text { if } x<y \\
\Leftrightarrow \mu_{p}(x, y)=-\sum_{x \leq z \leqslant y} \mu_{p}(x, z)
\end{array}
$$

If we write $\mu_{M}=\mu_{z(\mu)}$, then the lemma says

$$
U_{F}=\sum_{\substack{s \leq F \\
c \mid(s)=F}}(-1)^{|s|}=\left\{\begin{array}{cl}
\mu_{M}(\phi, F) & \text { if } M \text { loopless } \\
0 & \text { otherwise. }
\end{array}\right.
$$

This is a version of Rota's crossunt theorem.

Cor: If M is loopless, then

$$
x_{M}(q)=\sum_{F \in \mathcal{L}(M)} \mu_{M}(\varnothing, F) q^{\operatorname{crk}(F)}
$$

Written as sum arr $\mathcal{L}(M) \quad b / c \mu_{M}$ depends, only on poses.

$$
\text { Ex: } M=u_{3,4}
$$

$$
\rightarrow \quad x_{u_{3,4}}(q)=q^{3}-4 q^{2}+6 q-3
$$

Cor: The itch Whitney number of the first kind is

$$
\begin{aligned}
w_{i}(M)=w_{i} & =\text { coeff. of } q^{r-i} \text { in } x_{M}(q) \\
& =\sum_{\substack{F \in \mathcal{L}(M) \\
r h(F)=i}} \mu_{M}(\phi, F) .
\end{aligned}
$$

