Last time: Möbins inversion for canting $\left|\cup A_{i}\right|$.
A simikridea: Point-connting over \mathbb{F}_{2}.
Let $M=M(A)$, where A is a configuration $\left\{v_{e} \mid e \in E\right\}$ in an \mathbb{F}_{2}-vector space V. WLOG, A spans V, so

$$
\operatorname{dim} V=r k(M)=: r \quad \Rightarrow|V|=q^{r}
$$

We get an associated hyperplane arrangement in V^{*}, where

$$
v_{e} \longrightarrow H_{e}=\left\{f \in V^{*} \mid f\left(v_{e}\right)=0\right\} .
$$

cf. Lecture 12 Exercise 1

Notation: For $X \leqslant E$, set $H_{x}=\bigcap_{e \in x} H_{e}$, so that

$$
\begin{aligned}
r k(x) & =\operatorname{codim}\left(H_{x}\right) \\
& =r-\operatorname{dim}\left(H_{x}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \text { - } H_{x}=H_{c l(x)} . \\
& \text { • } F \text { is a flat } \Leftrightarrow H_{F v_{e}}=H_{F} \cap H_{e} \subset H_{F}
\end{aligned}
$$

for all $e \notin F$.

That is
flats \leftrightarrow subspaces of V^{*} obtained by intersecting the He_{e}.

For each flat F, let

$$
\begin{aligned}
g(F)= & \left|H_{F}\right\rangle\left(\underset{\substack{G F I L t \\
G F F}}{\bigcup_{G}} H^{\prime}\right) \mid \\
= & \# \text { points in } H_{F} \text { which aren't } \\
& \text { contained in any } H_{G} \nsubseteq H_{F} .
\end{aligned}
$$

Then

$$
f(F)=\sum_{G \geqslant F} g(G)=\left|H_{F}\right|=q^{\operatorname{crh}(F)} .
$$

By Möbins inversion,

$$
g(F)=\sum_{G \geq F} \mu(F, G) f(G) .
$$

In particular (assuming M is loopless),

$$
g(\phi)=\sum_{G \in \mathcal{L}(\mu)} \mu(\phi, G) q^{\operatorname{crh}(\sigma)}
$$

ie.

$$
\left|V^{*} \backslash \bigcup_{e \in E} H_{e}\right|=x_{M}(q)
$$

The cherracterstic polynomial counts the complement of the hyperplane arr. (over \mathbb{F}_{2}).

Ex: $M=U_{2,3}$

A in $\mathbb{F}_{q}{ }^{2}$

$\left(\mathrm{F}_{\mathrm{f}}^{2}\right)^{\circ}$

$$
\Rightarrow x_{u z, 3}(q)=q^{2}-3 q+2
$$

Ex: $U_{2, n}$ is represented by n distinct lines in $\left(\mathbb{F}_{q}^{2}\right)^{*}$

$$
\Rightarrow x_{u_{2, n}}(q)=q^{2}-n q+(n-1)
$$

Exact save reasoning: $\bar{x}_{M}(q)=\frac{x_{M}(q)}{q-1}$ counts the complement of the progectivized hyp. arr.

Ex: $u_{2, n}$

$$
\begin{aligned}
\bar{X}_{u_{2, n}}(q) & =(q+1)-n \\
& =q-(n-1)
\end{aligned}
$$

Ex: Let M be the matroid with geometric rep.

$$
\subseteq \mathbb{P}^{2}
$$

The comespanding projective hyperplane arr. is

$$
\subseteq\left(\mathbb{P}^{2}\right)^{\vee}
$$

So

$$
\begin{aligned}
\bar{x}_{M}(q) & =\underbrace{q^{2}+q+1}_{=\left|\mathbb{P}^{2}\right|=\frac{q^{3}-1}{q-1}}-5(q+1)+4 \cdot 1+2 \cdot 2 \\
= & =\mathbb{P}^{2} \left\lvert\,=\frac{q^{2}-1}{q-1}\right. \\
& =q^{2}-4 q+4 \\
\Rightarrow x_{M}(q) & =(q-1)\left(q^{2}-4 q+4\right)=q^{3}-5 q^{2}+8 q-4 .
\end{aligned}
$$

