Let

•
$$A = \{v_e \mid e \in E\}$$
 a configuration in a C-vector
space V (webb A spans V).
• $\{H_e \mid e \in E\}$ the associated hyperplane arrangement
in V^* .
Let
 $U_A := V^* \setminus \bigcup_{e \in E} H_e$.
 $Big Project$: Compare U_{A_1} and U_{A_2} when
 $M(A_1) = M(A_2) = M$.
Easy: dim $U_{A_1} = \dim U_{A_2} = rk(M)$.
 $Orlik - Sdomon '80$: $H^*(U_{A_1}; Z) \cong H^*(U_{A_2}; Z)$
 $Rybnikov, '94$: There exist arrangements A_1 and
 A_2 of 13 phase each in C^3 such
that $M(A_1) = M(A_2)$ but
 $T_1(U_{A_1}) \notin T_1(U_{A_2})$.

Let M = M(A) be a G-representable matroid on [n]. Let's try to understand $H^{\circ}(M_{A}; Z) =: H^{\circ}(M_{A})$. <u>Generators</u>: For each i, we have $M_{A} \longrightarrow V^{\circ} \setminus H_{i} = C^{\times} = S^{\circ}$ Let $\beta_{i} \in H^{\circ}(M_{A})$ be the pullback of the generator of $H^{\circ}(S^{\circ})$.

 $\frac{\text{Orlik} - \text{Solomon algebra}}{\text{Let } \Lambda^{\circ}[x_{1}, ..., x_{n}] \text{ be graded exterior algebra (over Z),}}$ with each generator in degree 1. For $S = \{i_{1}, ..., i_{k}\} \in [n]$ with $i_{1} \in i_{2} \in ... \in i_{k}$, let $X_{S} := X_{i_{1}} \wedge ... \wedge X_{i_{k}} \in \Lambda^{\circ}[x_{i_{1},..., x_{k}}]$ and $\partial X_{S} := \sum_{j=1}^{k} (-1)^{j-1} \times S_{1j}$ Ex: $X_{123} = x_{1} \wedge x_{2} \wedge x_{3} \in \Lambda^{3}[x_{1}, x_{2}, x_{3}]$

 $\partial x_{123} = x_{23} - x_{13} + x_{12} = x_2 \wedge x_3 - x_1 \wedge x_3 + x_1 \wedge x_2 \in \Lambda^2 [x_{13} + x_{12} + x_$

Def: The Orlih-Solomon ideal of the matroid M is

$$I_{os} = (\partial x_c | C \in C(M)) \subseteq \Lambda^{\circ}[x_{i_1, \dots, i_m}]$$

The Orlih-Solomon algebra of M is the
quotient
$$OS^{(M)} = \Lambda^{(x_1,...,x_n)} / Ios$$

Note: Jos is homogeneous => OS(M) inherits the
grading from
$$\Lambda^{*}[x_{i},...,x_{n}]$$
.
 $\partial Ios \subseteq Ios, so OS^{*}(M)$ inherits the
derivation ∂ .
(use graded Leibniz rule)
 $b \partial(y \cdot \partial x_{c}) = 0$

The (Brieshorn, Orlik-Solomon '80): Let M be a simple
(I-representable matroid, and let A be a configuration
with M = M(A). There is an isomorphism

$$OS^{\circ}(M) \longrightarrow H^{\circ}(U_{A}).$$

 $X_{i} \longmapsto \beta_{i}$

Shetch: To show this is cell-defined, we need
·
$$\beta_i^2 = 0$$
 ($H^2(S') = 0$)
· $\beta_i\beta_j = -\beta_j\beta_i$ (goded commutativity)
Define, for $S \in [n]$, β_S and $\beta\beta_S \in H^*(U_d)$
analogously to how we defined x_S and βx_S .
· If C is a circuit, then $\beta\beta_C = 0$
(Exercise in (de Rham) cohomology)