No class Friday
The (Brieshor, Orlih-Solomon): Let M be a simple \mathbb{C}-represeatalale matroid, and A a configuration with $M=M(A)$. There is an isomorphism

$$
\begin{aligned}
O S^{-}(M) & \longrightarrow H^{\cdot}\left(u_{1}\right) \\
x_{i} & \longmapsto \beta_{i}
\end{aligned}
$$

Proof sketch: Well-defined

We now proceed by induction on n, the size of the ground set.

If $M=U_{0,0}$, then ${O S^{\circ}}^{(}(M)=\mathbb{Z}=H^{\circ}(p t)$.

Otherwise, we pick an element $e \in[n]$ and delete/ con tract.

For ease of notation，let A^{\prime} and $A^{\prime \prime}$ be the configurations comespanding to the deletion M位 and contraction M／e，resp．

Picture：

A

A^{\prime}

人＂

Then

$$
\begin{aligned}
& \cdot u_{A, u_{A^{\prime \prime}} \subset u_{A^{\prime}}} \\
& \cdot u_{A^{\prime \prime}}=u_{A^{\prime}} \cap H_{e} \\
& \cdot u_{A}=u_{A^{\prime}} \backslash u_{A^{\prime \prime}}
\end{aligned}
$$

The inclusion $U_{A} \hookrightarrow U_{A^{\prime}}$ gives a long exact seq. in cohomology

$$
\cdots \rightarrow H^{i}\left(u_{\lambda^{\prime}}\right) \rightarrow H^{i}\left(u_{A}\right) \rightarrow H^{i+1}\left(u_{\Lambda^{\prime}}, u_{\ell}\right) \rightarrow \ldots
$$

Claim: $H^{i+1}\left(U_{A^{\prime}}, U_{A}\right) \cong H^{i-1}\left(U_{A^{\prime \prime}}\right)$
Proof of claim: Let N be a tubular neighborhood of $U_{A^{\prime \prime}}$ in $U_{A^{\prime}}$.

Then

$$
N \cong \mathbb{C} \times U_{A^{\prime \prime}} \quad \begin{aligned}
& \text { Trivial fiber bundle } \\
& \text { over } U_{A^{\prime \prime}}
\end{aligned}
$$

and

$$
N^{x}:=N \backslash U_{A^{\prime \prime}} \cong \mathbb{C}^{\times} \times U_{A^{\prime \prime}}
$$

Relative Künneth:

$$
\begin{aligned}
& H^{\cdot}\left(N, N^{x}\right) \cong \underbrace{\left.H^{0}, \mathbb{C}^{x}\right) \otimes H^{0}\left(u_{4^{\prime \prime}}\right)}_{H^{i}=\left\{\begin{array}{cc}
\mathbb{Z} & i=2 \\
0 & \text { else }
\end{array}\right.} \\
& \Rightarrow H^{i+1}\left(N, N^{x}\right) \cong H^{i-y}\left(u_{t^{\prime \prime}}\right)
\end{aligned}
$$

(Thou Isomorphism)
On the otter hand, $U_{A}=U_{A^{\prime}} \backslash U_{A^{\prime \prime}}$, so $u_{A^{\prime}} \backslash N \leq u_{n}$

$$
\begin{aligned}
& \cdot u_{A^{\prime}} \backslash\left(u_{A^{\prime}} \backslash N\right)=N \\
& \cdot u_{A} \backslash\left(u_{A^{\prime}} \backslash N\right)=N^{x}
\end{aligned}
$$

We can excise this subspace

$$
H^{*}\left(U_{t^{\prime}}, U_{t}\right) \cong H^{\cdot}\left(N, N^{x}\right)
$$

Next step: Show we have a short exact sequence

$$
\begin{aligned}
O \rightarrow O S^{i}(M \backslash e) \underset{\substack{i \\
\text { inclusion }}}{\rightarrow} O S^{i}(M) & \rightarrow O S^{i-1}(M / e) \rightarrow 0 \\
x_{s} & \mapsto\left\{\begin{array}{cc}
x_{\text {sire }} & \text { if et } \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

To show exactress in middle, use the nbe-monomials, which form a basis for $O S^{\circ}(M)$.

Once we have thin, ne car finish the induction.

$$
\begin{gathered}
O \rightarrow \text { OS }^{i}(M \backslash e) \rightarrow \text { OS }^{i}(M) \rightarrow \text { OS }^{i-1}(M / e) \rightarrow 0 \\
\downarrow \cong \\
0 \rightarrow H^{i}\left(U_{A^{\prime}}\right) \rightarrow H^{\prime}\left(U_{A}\right) \rightarrow H^{i-1}\left(U_{A^{\prime \prime}}\right) \rightarrow 0
\end{gathered}
$$

- the diagram commutes
- He outer maps are iso.s by induction
- exactress on right
- LES \Rightarrow exactness in middle + left
- 5 -lemma \Rightarrow is. in middle

