The (Brieshorn, Orlik-Solomon): Let M be a simple
C-representable matroid, and A a configuration with

$$M = M(A)$$
. There is an isomorphism
 $OS^{\bullet}(M) \longrightarrow H^{\bullet}(U_A)$
 $X_i \longmapsto \beta_i$

Def: The Poincaré polynomial of A is

$$T_A(q) = \sum_{i \ge 0} (rank H^i(U_A)) q^i$$

Cor: Let M be a simple C-representable metroid
and A a configuration with
$$M(A) = M$$
.
Then
 $T_A(q) = \sum_{i \ge 0} (rank OS^i(M)) q^i$
 $= (-q)^{rk(M)} \chi_M(-\frac{1}{2})$
 $= \sum_{i=0}^{rk(M)} |w_i| q^i$.
That is rank $OS^i(M) = |w_i|$.

Recall: In the proof of the theorem, we found a
short exact sequence

$$O \rightarrow OS^{i}(M \setminus e) \rightarrow OS^{i}(M) \rightarrow OS^{i-1}(M \setminus e) \rightarrow O$$

Proof: If A is the empty anonyment in C° , so
 $M = U_{q,o}$, then
 $\pi_{A}(q) = 1 = (-q)^{\circ} \mathcal{X}_{U_{q,o}}(-\frac{1}{t})$.
Otherwise, the deletion-contraction sies. implies
 $\pi_{A}(q) = \pi_{A'}(q) + q \cdot \pi_{A''}(q)$.
If e is not a coloop, then by induction
 $\pi_{A}(q) = (-q)^{\circ L(M)} \mathcal{X}_{M \setminus e}(-\frac{1}{t}) + q \cdot (-q)^{\circ L(M)-1} \mathcal{X}_{M \setminus e}(-\frac{1}{t})$
 $= (-q)^{\circ L(M)} (\mathcal{X}_{M \setminus e}(-\frac{1}{t}) - \mathcal{X}_{M \setminus e}(-\frac{1}{t}))$
 $= (-q)^{\circ L(M)} \mathcal{X}_{M}(-\frac{1}{t})$.

)

$$\begin{aligned} \mathbf{JS} \ e \ is \ a \ coloop, \ Hen \ He \ only \\ differnce \ is \ rk(M \ e) = rk(M) - 1. \ So \\ \overline{T}_{4}(q) = (-q)^{rk(M)-1} \mathcal{X}_{M \ e}(-\frac{1}{2}) + q \cdot (-q)^{rk(M)-1} \mathcal{X}_{M \ e}(-\frac{1}{2}) \\ &= \left[(-q)^{rk(M)} - 1 + q \ (-q)^{rk(M)-1} \right] \mathcal{X}_{M \ e}(-\frac{1}{2}) \\ &= (-q)^{rk(M)} \left(-\frac{1}{q} - 1 \right) \mathcal{X}_{M \ e}(-\frac{1}{2}) \\ &= (-q)^{rk(M)} \mathcal{X}_{M}(-\frac{1}{2}). \end{aligned}$$