Compactification of UA

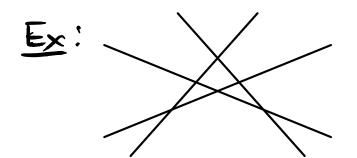
Continue to let

- A = {veleeE} a configuration in a C-vector space V (wLOG A spans V), with M(A) = M a simple matroid.
- {He | e ∈ E} He associated hyperplane arrangement
 in V*.

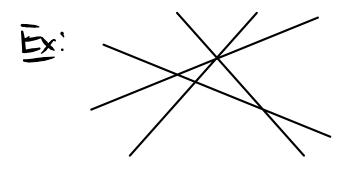
•
$$U_{\mathcal{A}} := V^* \setminus \bigcup_{e \in E} H_e$$

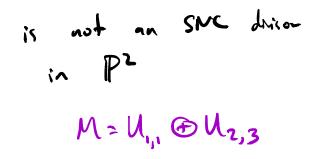
We've seen that
$$H^{\bullet}(U_{A}) \cong OS^{\bullet}(M)$$
.
Nice: rank $H^{i}(U_{A}) = |W_{i}|$
Not nice: U_{A} is not compact

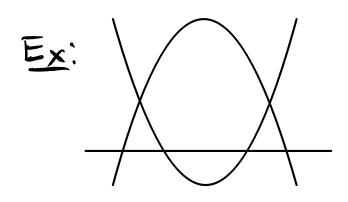
Suppose X is a smooth complex variety
(an "algebraic" complex manifold).
If
$$\overline{X}$$
 is a compactification (Bad notation!)
Here what does the boundary divisor
 $\partial \overline{X} := \overline{X} \setminus X$



is an SNC divisor in \mathbb{P}^2 $\mathcal{M} = U_{3,1}$







is an SNC divisor in P²

In the case of X = PUA, De Concini and Procesi (195) give an explicit construction of an SNC compactification, called the wonderful compactification of PUL.