Recall: - M a simple \mathbb{C}-representable matroid

- A a configuration in V with $M=M(A)$
- U_{A} the hyperplane arrangement complement in $V^{*}{ }^{*}$

Goal: Describe DeConcini and Procesi's wonderful compactification of $\mathbb{P} U_{A}$.

Notation: For each flat F of M, set

$$
H_{F}:=\bigcap_{e \in F} H_{e} \leqslant V^{*}
$$

Note: $\cdot H_{\phi}=V^{\prime \prime}$

$$
\begin{aligned}
& \cdot H_{E}=\{0\} \\
& \cdot H_{G} \leqslant H_{F} \Leftrightarrow G \geqslant F
\end{aligned}
$$

and

$$
U_{F}:=H_{F} \backslash\left(\bigcup_{G \geq F} H_{G}\right)
$$

Note: $\overline{u_{F}}=H_{F}$

$$
\begin{aligned}
& \cdot u_{D}=u_{A} \\
& \cdot u_{E}=\{0\}
\end{aligned}
$$

Then

$$
V^{*}=\frac{11}{F \in I(m)} u_{F}
$$

and

$$
\mathbb{P V}^{*}=\frac{11}{\substack{F \in I(M) \\ F \neq E}} \mathbb{P} U_{F}
$$

Ex:

$$
\text { in } \mathbb{P}^{2} \quad\left(M=u_{3,4}\right)
$$

The composition

$$
\underset{\substack{\ddot{u}_{\phi} \\ U_{A}} V^{*} \longrightarrow V^{*} / H_{F} \quad r-\operatorname{crk}(F)=\operatorname{rh}(F) .}{ }
$$

gives

$$
\mathbb{P} u_{A} \longrightarrow \mathbb{P}\left(V^{*} / H_{F}\right)
$$

for each nonempty flat F.

Putting these together, ne get

$$
\psi: \mathbb{P} U_{A} \longrightarrow \prod_{\phi * F \in \mathcal{L}(\mu)} \mathbb{P}\left(v^{*} / H_{F}\right)
$$

For each $x \in \mathbb{P} U_{A}, \psi(x)$ reads the "direction" from x to H_{F}
Observation: ψ is an open embedding (in the coolunte indexed by $F=E$, it's $\left.\mathbb{P} U_{1} \hookrightarrow \mathbb{P} V^{n}\right)$, so the image $\psi\left(\mathbb{P} U_{4}\right)$ is an open subvariety.

Def: The closure of the image $\psi\left(\mathbb{P} U_{A}\right)$ is called the wonderful compactification of $\mathbb{R} U_{A}$ (also the monderfil model of $\left\{\mathrm{H}_{2}\right\}$), and is denoted Y_{A}.

In rank 2, this is boring.

$$
\text { Ex: } \mathbb{P} U_{A}=\mathbb{P}^{\prime} \backslash\left\{\begin{array}{l}
\text { n distinct points }\}
\end{array}\right.
$$

$$
\mu=u_{2, n}
$$

Then

$$
\begin{aligned}
\psi: \mathbb{P}^{\prime} \backslash\{n \text { p ht }\} & \longrightarrow \mathbb{P}^{\prime} \times \underbrace{\mathbb{R}^{0} \times \mathbb{R}^{0} \times \cdots x \mathbb{R}^{\prime}} \\
{[x: y] } & \longmapsto[x: y]
\end{aligned}
$$

i.e. ψ is the indasion of $\mathbb{P}^{\prime} \backslash\left\{n\right.$ pt into \mathbb{P}^{\prime}.

So its closure is

$$
y_{A}=\overline{\mathbb{P} u_{A}}=\mathbb{P}^{\prime}
$$

It gets move interesting in rank 3 .

Ex: Let $A=\{(1,0,0),(0,1,0),(0,0,1)\}$, so $M=u_{3,3}$.
The hyperplane arr. is the 3 coordinate planes in $V^{*} \cong \mathbb{C}^{3}$.

$$
I_{n} \mathbb{P} V^{*} \cong \mathbb{P}^{2}:
$$

$$
\begin{aligned}
\mathbb{P} U_{A} & =\left\{[x ; y: z] \in \mathbb{P}^{2} \mid x, y, z \text { all nonzero }\right\} \\
& \cong\left(\mathbb{C}^{x}\right)^{3} / \mathbb{C}^{x} \cong\left(\mathbb{C}^{x}\right)^{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \psi: \mathbb{P} U_{A} \longrightarrow \mathbb{P}^{2} \times \mathbb{P}\left(\mathbb{C}^{3} / z=\times \times 3\right) \times \mathbb{P}\left(\mathbb{C}^{3} / y_{\text {-axis }}\right) \times \mathbb{P}\left(\mathbb{C}^{3} / \times z \times x\right) \times \mathbb{P}^{0} \times \mathbb{P}^{\circ} \times \mathbb{P}^{\circ} \\
& {[x: y: z] \longmapsto([x: y: z],[x: y],[x: z],[y: z],[x],[y],[z])}
\end{aligned}
$$

A point in the image is Lutally determined by the list coord. But chat do ne add in the closure?

If x and y ae both nonzero, flem er can approach $[x: y: 0]$ along a path in $\mathbb{P} U_{A} \cong \varphi\left(\mathbb{P} U_{A}\right)$. In the lint, ne get

$$
\begin{aligned}
& ([x: y: 0],[x: y],[x: 0],[y: 0]) \\
& \quad=([x: y: 0],[x: y],[1: 0],[1: 0])
\end{aligned}
$$

So we can recover any point in the hyperplane $(z=0)$, other than $[1: 0: 0]$ and $[0: 1: 0]$.
Similar for $(y=0)$ and $(z=0)$.

What happens if we approach $[1: 0: 0]$ along a path in U_{2} ?

The tangent lie of the path at $[1: 0: 0]$ is defied by

$$
\begin{aligned}
a^{0} x+b y+c z & =0 \\
b y+c z & =0 \rightarrow z=-\frac{b}{c} y
\end{aligned}
$$

for sone $b, c \in \mathbb{C}$ not both zero. $[y ; z]=\left[y:-\frac{b}{c} y\right]$
So in the limit, ne get

$$
=[c:-b]
$$

$$
([1: 0: 0],[1: 0],[1: 0],[c:-6])
$$

So re get a copy of \mathbb{P}^{\prime} ling "above" [1:0:0], corresponding to the directions from which can approach it.

Similarly for $[0: 1: 0]$ and $[0: 0: 1]$.

So Y_{A} compactifies $\mathbb{P} U_{A}$ by addng the bondery divior

