Last Week: The wonderful compactification

- A a configuration in \mathbb{C}-vector space V
- U_{A} the complement of the associated hyperplane amnnyement in V *
We have an open embedding

$$
\psi: \mathbb{P} U_{A} \longleftrightarrow \prod_{\substack{F \in \alpha(\mu) \\ F \neq \phi}} \mathbb{P}\left(V^{N} / H_{F}\right)
$$

The wonderful compactification Y_{A} is the closme of the image $\psi\left(\mathbb{P} U_{4}\right)$.

Key observation: The projection onto

$$
\begin{aligned}
& \mathbb{P}\left(V^{*} / \mathbb{H}_{E}\right)=\mathbb{P} V^{*} \text { gives a surjection } \\
&\mathbb{k} 0\} \\
& \mathbb{T}: Y_{A} \longrightarrow \mathbb{P} V^{*}
\end{aligned}
$$

which restricts to an isomorphism over $\mathbb{P} U_{A}$:

$$
\pi^{-1}\left(\mathbb{P} U_{A}\right) \xrightarrow{\sim} \mathbb{P} U_{A}
$$

The complement of $\pi^{-1}\left(\mathbb{P} U_{A}\right)$ in Y_{A} is the boundary divisor ∂Y_{A}. By construction, π maps ∂V_{A} sunjectively onto $\bigcup_{e \in E} H_{e}$.
What does this look like?
Ex: For the arrangement of coordinate lines in \mathbb{P}^{2} (a representation of $u_{3,3}$), we found the boundary divisor to be

Notes

$$
\cdot y_{A} \backslash \partial y_{A} \cong \mathbb{P} u_{A}
$$

- The "horizontal" capporents dent infect.
- For each flat $F(\nexists \phi, E)$, $\pi^{-1}\left(\mathbb{P} H_{F}\right)$ in a nim of components, while $\overline{\pi^{-1}\left(\mathbb{P} u_{F}\right)}$ is a single component.

This example is kind of silly, because we already had an SNC compactification of $\mathbb{P} U_{\lambda}$, but it illustantes the basic features.

In rank 3, we replace each intersection point (rank 2 flats) with a "vertical" copy of \mathbb{P} ":

Local picture:

This is a blowup, and in general X_{A} can be defied as a sequence of blomps.

In higher rank, the picture is move complicated (and impossible to duma), but the intuition here mostly carries over.

Boundary Components
Def: For each proper non-empty flat F, let

$$
D_{F}:=\overline{\pi^{-1}\left(\mathbb{P} U_{F}\right)} \leqslant y_{A}
$$

Observe:

$$
\begin{aligned}
& \cdot \partial Y_{A}=\bigcup_{\substack{F \not F \neq(\mu) \\
F \neq \phi, E}} D_{F} \\
& \cdot \pi^{-1}\left(H_{e}\right)=\bigcup_{F \ni e} D_{F}
\end{aligned}
$$

Thu: Let F be a proper, non-empty flat. Then

$$
D_{F} \cong \mathbb{P}\left(H_{F}\right) \times \mathbb{P}\left(V^{*} / H_{F}\right)
$$

Cor: $\operatorname{dim} D_{F}=(r-r k(F)-1)+(r-(r-r k(F))-1)$

$$
\begin{aligned}
& =r-2 \\
& =\operatorname{dim} \mathbb{P} U_{A}-1 \\
& =\operatorname{dim} Y_{A}-1
\end{aligned}
$$

Cor: $D_{F} \cap D_{G} \neq \varnothing \Leftrightarrow F \leqslant G$ or $G \leqslant F$

