Lost Week: The wonderful compactification

$$A$$
 a configuration in C-vector space V
 U_A the complement of the associated
hyperplace annungement in V^{*}
We have an open embedding
 ψ : $\mathbb{P}U_A \longrightarrow \prod_{F \in d(M)} \mathbb{P}(V^*/H_F)$
The nonderful compactification Y_A is the closure
of the image $\psi(\mathbb{P}U_A)$.
Key observation: The projection onto
 $\mathbb{P}(V^*/\mathbb{H}_E) = \mathbb{P}V^*$ gives a surjection
 $\pi: Y_A \longrightarrow \mathbb{P}V^*$
which restricts to an xomorphism over $\mathbb{P}U_A$:
 $\pi^{-1}(\mathbb{P}U_A) \longrightarrow \mathbb{P}U_A$

Notes · Y_A \ ∂Y_A ≈ PU_A · The "horizontal" components don't intersect. · For each flat F (≠Ø,E), TT⁻¹(PH_F) is a union of components, while TT⁻¹(PU_F) is a single component. because we already

This example is kind of silly, because re already had an SNC compactification of PUL, but it illustrates the basic features.

Boundary Components
Def: For each proper non-empty flat F, let

$$D_F := \pi^{-1}(PU_F) \leq Y_A$$

Observe:
$$\partial Y_{A} = \bigcup_{\substack{F \in \mathcal{I}(M) \\ F \neq \emptyset, E}} D_{F}$$

 $\pi^{-1}(H_{e}) = \bigcup_{\substack{F \neq \emptyset, E}} D_{F}$

Thm: Let F be a proper, non-empty flat. Then

$$D_F \cong P(H_F) \times P(V^*/H_F)$$

Cor: dim
$$D_F = (r - rk(F) - 1) + (r - (r - rk(F)) - 1)$$

= $r - 2$
= dim $PU_A - 1$
= dim $Y_A - 1$

Cor: DFADG # Ø Z FEG or GEF