Then the nonderful compactification
$$Y_A$$

is the closure of the image of
 $\psi: PU_n \longrightarrow T P(V^*/H_E)$

$$\begin{array}{c} \varphi \cdot \Pi \cap \Pi \left(\nabla / \Pi F \right) \\ F \in \mathcal{J}(M) \\ F \neq \varphi \end{array}$$

where
$$H_F = \bigcap_{e \in F} H_e$$
.

For a proper, non-empty flat F, we set

$$D_{F} := \overline{\pi^{-1}(PU_{F})}$$
where $U_{F} = H_{F} \setminus U H_{G}$ and
 $G_{2F} = H_{F} \setminus U H_{G}$ and
 $\pi : Y_{A} \longrightarrow PV^{*}$
is the notional projection.

For the remaining coordinates, is look at the
tangent line to the path at X.
This determines a point
u.e.
$$P(V^*/H_F)$$

which will be a coordinate of the limit point.
By continuity, the remaining coordinates are
given by the images of a under the maps
 $P(V^*/H_F) \longrightarrow P(V^*/H_G)$
which are cell-defield wherear $H_F \subseteq H_G$
 $\Longrightarrow G \subseteq F$.
Thus, the limit point in Y_A is uniquely
determined by $x \in PU_F$ and $u \in P(V^*/H_F)$.
The closure, x can be any point in PH_F , so
 $D_F \cong PH_F \times P(V^*/H_F)$.

The Chow ring
If
$$M = M(A)$$
 is a simple (I-representable
montroid, and Y_A is the wonderful complectification.
We know
 $\partial Y_A = Y_A \setminus \pi^{-1}(IPU_A) = U D_F$
 $F_{F,G,E}$
 D_F has complex codimension one in Y_A
 $D_F \cap D_G \neq \emptyset \iff F \leq G \Rightarrow G \leq F$
 $\pi^{-1}(H_e) = U D_F$
Free
Each D_F is a subveniety (closed submanifold) so
defines a class $[D_F] \in H^2(Y_A; Z)$.

In m (De Concini - Process '95): Let M be a
simple (1-representable method on ground set E,
and let A be a configuration in a
(1-vector space V representing M.
Then the map

$$Z[x_F | F \in \mathcal{I}(M) \setminus \{E, \emptyset\}] \longrightarrow H^{\circ}(Y_A; Z)$$

 $x_F \longmapsto [D_F]$
is surjective, i.e., the [D_F] generate $H^{\circ}(Y_A; Z)$.
The hernel is generated by
 $\cdot X_F \times_G$ for F, G incomparable
 $\cdot \sum_{F \in G} X_F - \sum_{G \in F} X_G$ for $e, f \in E$.