Last time:

Thu (DeConciri-Procesi '95): Let M be a simple \mathbb{C}-representable mattoid on ground set E, and let A be a configuration in a \mathbb{C}-vector space V st. $M=M(A)$.

Then the map

$$
\begin{aligned}
\mathbb{Z}\left[x_{F} \mid F \in \mathcal{L}(M) \backslash\{\varnothing, E\}\right] & \longrightarrow H^{\circ}\left(Y_{A} ; \mathbb{Z}\right) \\
x_{F} & \longmapsto\left[D_{F}\right]
\end{aligned}
$$

is a surjection.
The kernel is generated by

- $x_{F} x_{G} ; \quad F, G$ incomparable

$$
\text { - } \sum_{F \rightarrow e} x_{F}-\sum_{G \rightarrow f} x_{G} ; \quad e, f \in E
$$

In genera, the Chow ring of a smooth projective (compact) complex variety X, is the subbing

$$
A^{\bullet}(x) \subseteq H^{2 \cdot}(x)
$$

generated by classes of algebraic subvarieties.
Cor: $A^{0}\left(Y_{A}\right)=H^{2 \cdot}\left(y_{A}\right)$

Def: Let M be a simple mattoid. Tee (integral) Chow ring of M is

$$
A^{\bullet}(M):=\frac{\mathbb{Z}\left[x_{F} \mid F \in \mathcal{L}(M) \backslash\left\{\phi_{,} E\right\}\right]}{I_{M}+J_{M}}
$$

where

$$
\begin{aligned}
& I_{M}=\binom{\left.x_{F} x_{G} \quad \mid F, G \text { in comparable }\right)}{I_{M}=\left(\sum_{F \rightarrow e} x_{F}-\sum_{G \rightarrow f} x_{G} \mid e, f \in E\right)} .
\end{aligned}
$$

and each X_{F} has degree 1.

Ex: $A^{\circ}\left(U_{3,4}\right)$ has 10 generators

$$
x_{1}, \ldots, x_{4} \quad \text { and } \quad x_{12}, \ldots, x_{34} \quad \in A^{\prime}\left(u_{3,4}\right)
$$

The linear relations tell us the 4 elements

$$
\begin{aligned}
& x_{1}+x_{12}+x_{13}+x_{14} \\
& x_{2}+x_{12}+x_{23}+x_{24} \\
& x_{3}+x_{13}+x_{23}+x_{34} \\
& x_{4}+x_{14}+x_{24}+x_{34}
\end{aligned}
$$

are equal in $A^{\circ}\left(u_{3 j}\right)$ a

$$
\Rightarrow \operatorname{rank} A^{\prime}\left(u_{3,4}\right)=7
$$

The quadratic relations tell us that every product of two generators is zero except for possibly

$$
x_{i} x_{i j}, \quad x_{i}^{2}, \quad x_{i j}^{2}
$$

Exercise 2: For all $i, j \quad \cdot x_{i} x_{i j}=x_{1} x_{12}$

$$
\begin{aligned}
& \cdot x_{i}^{2}=-2 x_{1} x_{12} \\
& \cdot x_{i j}^{2}=-x_{1} x_{12}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow A^{2}\left(u_{3,4}\right) \text { gen. by } x_{1} x_{12} \\
& \Rightarrow A^{2}\left(u_{3,4}\right) \cong \mathbb{Z} \text { or }\{0\} . \\
& \Rightarrow A^{k}\left(u_{3,4}\right)=\{0\} \text { for } k \geqslant 3 .
\end{aligned}
$$

