$$\frac{\text{Recall}:}{\text{The Chow ring of M is}} A^{\bullet}(M) := \frac{\mathbb{Z}[x_F \mid F \in J(M) \setminus \{\emptyset, E\}]}{\mathbb{I}_M + \mathbb{J}_M},$$
where
$$\mathbb{I}_M = (x_F \times_G \mid F, G \text{ incompanable}),$$

$$\mathbb{J}_M = (\sum_{F \geq e} x_F - \sum_{G \geq f} x_G \mid e, f \in E)$$
and each x_F has degree 1.

$$\cdot \beta = \sum_{F} x_{F} - \alpha$$

Prop: Let
$$\emptyset \notin F_i \notin F_z \notin \cdots \notin F_k \notin E$$
 be a flag.
(1) If the flag is initial (real $F_i = i$ for all i), then
 $X_{F_i} \times_{F_z} \cdots \times_{F_k} \propto^{r-1-k} = \propto^{r-1} \in A^{r-1}(M)$

(2) If the flow is not initial, then

$$x_{F_1} x_{F_2} \cdots x_{F_k} \alpha^{r-1-k} = 0 \quad \in A^{r-1}(M)$$

Proof: We begin with an observation. If F is a
(non-empty, proper) flat and
$$i \notin F$$
, then
 $X_F X = X_F \underset{G \ni i}{\underset{f \in S}{\underset{f E}{\underset{f \in S}{\underset{f \in S}{\underset{f E}{\underset{f E}{\underset{f}$

★ In particular, if rh.F=r-1, Hen XFX=0

Proof of (2): For the flag to not be initial,
remnst have
$$k \leq r-1$$

If $k = r-2$, then $rk(F_{r-2}) = r-1$, so the
product
 $X_{F_1} \cdots X_{F_{r-2}} \cdot \alpha = 0$
by k .
For general k , choose some $i \notin F_k$.
By k ,
 $X_{F_1} \cdots X_{F_k} \cdot \alpha^{r-1-k} = X_{F_1} \cdots X_{F_k} \left(\sum_{\substack{G > i \\ G > i}} X_G \right) \alpha^{r-1-k-1}$.
But thus is a sum over length - $(k+1)$ flags
which are not initial. So it is zero by induction.

/

Proof of (1): Induct on k.
If
$$k = 1$$
, then $\emptyset \notin F_i \notin E$ where $F_i = \{i\}$.
So
 $\alpha^{r-1} = \left(\sum_{G \ni i} x_G\right) \alpha^{r-2}$
By (2), $x_G \alpha^{r-2} = 0$ unless $\emptyset \notin G \notin E$ is initial,
i.e. $rk = G = 1$. But the only such that is $G = \{i\} = F_i$.
So
 $\alpha^{r-1} = x_{F_i} \alpha^{r-2}$.
If $k \ge 1$, the first $k-1$ steps of a k -step with
flag
 $\emptyset \notin F_i \notin \cdots \notin F_{k-i} \notin F_k \notin E$
will be initial also.
By induction
 $\alpha^{r-1} = x_{F_i} \cdots x_{F_{k-i}} \alpha^{r-1} - (k-1)$
Choose $i \in F_k \setminus F_{k-1} \cdot B_i$ is
 $\alpha^{r-1} = x_{F_i} \cdots x_{F_{k-i}} \left(\sum_{G \ge i} x_G\right) \alpha^{r-1} - k$

is zero.

So re need
$$G \supseteq F_{k-1}$$
. But the only such G is
 $G = cl(F_{k-1} \cup g_i) = F_k$.
So
 $\alpha^{r-1} = \chi_{F_1} \cdots \chi_{F_k} d^{r-1-k}$.

2