The Kähler package
The key to Adipmasito-Huh- Knt's work is to show $A^{\circ}(M)$ "behaves like" the Chow ring of a smooth projective \mathbb{C}-variety, even alan M is not \mathbb{C}-representable.
Specifically, $A^{\prime}(M)$ satisfies 3 properties, which tooter form the Kähler package.
Let M be a rank r simple matroid on ground set E.

We let $A^{0}(M)_{\mathbb{R}}:=A^{0}(M) \underset{Z}{\otimes} \mathbb{R}$.
Def: A function $c: Z^{E} \rightarrow \mathbb{R}$ is strictly sumbodiler if

$$
\cdot c(\varnothing)=c(E)=0
$$

and

- If $A, B \leq E$ are incompamblle, then

$$
c(A \cup B)+c(A \cap B)<c(A)+c(B)
$$

Ex: $c(A)=|A| \cdot|E \backslash A|$ is strictly submodular.
Def: If $c: 2^{E} \rightarrow \mathbb{R}$ is strictly sutmodular, let

$$
\ell_{c}=\sum_{F} c(F) x_{F} \quad \in A^{\prime}(M)_{\mathbb{R}} .
$$

We call l_{c} an ample class, and we let

$$
K(M)=\left\{l_{c} \mid \text { c strictly smbmodilar }\right\} \subseteq A^{\prime}(M)
$$

be the ample cone of M.

Def: The nef cone $N(M)$ is the closure of $K(M)$ in $A^{\prime}(M)_{\mathbb{R}}$. Elements of $N(M)$ are called nef classes.

Lemma: The elements $\alpha, \beta \in A^{\prime}(M)$ are net.

Proof: Let $i \in E$ and define $\delta_{i}: 2^{E} \rightarrow \mathbb{R}$ by

$$
\delta_{i}(A)= \begin{cases}0 & i \notin A \text { or } A=E \\ 1 & i \in A \notin E\end{cases}
$$

So $\alpha=\sum_{F} \delta_{i}(F) x_{F}$.
Let $c: 2^{E} \rightarrow \mathbb{R}$ be a strictly submodilar function. Then for any $\in>0$, the function

$$
\delta_{i}+\epsilon \cdot C
$$

is strictly submodular: For incomparable $A, B \leq E$

$$
\begin{aligned}
& c(A \cup B)+c(A \cap B)<c(A)+c(B) \\
\Rightarrow & \epsilon \cdot c(A \cup B)+\epsilon \cdot c(A \cap B)<\epsilon \cdot c(A)+\epsilon \cdot c(B)
\end{aligned}
$$

- i\&A, i\&B $\Rightarrow \delta_{i}$ males no contribution
- $i \in A, i \neq B \Rightarrow \delta_{i}$ contributes 1 to right side, $i \notin A, i \in B \Rightarrow$ at most 1 to left side
. $i \in A, i \in B \Rightarrow \delta_{i}$ contributes 2 to right side, at most 2 to left sides
So

$$
\sum_{F}\left(\delta_{i}(F)+\epsilon \cdot c(F)\right) x_{F}=\alpha+\epsilon \ell_{c}
$$

is ample. In the limit as $\epsilon \rightarrow 0$, re get $\alpha \in N(M)$.
Similarly, $\beta \in N(M)$.

Thu (Adipmsito-Hah-Katz 'is)
Let M be a simple mattoid of rank r.
Let $0 \leq k \leq \frac{r-1}{2}$ and $l \in K(M)$.
(1) Poincare duality:

$$
\begin{aligned}
& A^{k}(M) \times A^{n-1-k}(M) \longrightarrow \mathbb{Z} \\
& \left(\eta_{1}, \eta_{2}\right) \longmapsto \operatorname{deg}\left(\eta_{1} \cdot \eta_{2}\right)
\end{aligned}
$$

is a perfect paring.

$$
A^{k}(M) \simeq \operatorname{Ham}_{z}\left(A^{-\cdots-1-1}(\vec{M}), \mathbb{Z}\right)
$$

(2) Hand Lefschetz:

$$
\begin{aligned}
L_{l}^{k}: A^{k}(M)_{\mathbb{R}} & \longrightarrow A^{r-1-k}(M)_{\mathbb{R}} \\
\eta & \longrightarrow l^{r-1-2 l} \cdot \eta
\end{aligned}
$$

is an isomorphism of \mathbb{R}-vector spaces.
(3) Hodge-Riemann Relations:

The symmetric bilinear form

$$
\begin{aligned}
Q_{l}^{k}: A^{k}(M)_{\mathbb{R}} \times A^{k}(M)_{\mathbb{R}} & \longrightarrow \mathbb{R} \\
\left(\eta_{1}, \eta_{2}\right) & \mapsto(-1)^{k} \operatorname{deg}\left(l^{r-1-2 l} \cdot \eta_{1} \cdot \eta_{2}\right)
\end{aligned}
$$

is positive definite on the primitive cohondogy

$$
\begin{aligned}
P_{l}^{k} & :=\operatorname{ker} l \cdot L_{l}^{k} \\
& =\{\eta \in A^{k}(M)_{\mathbb{R}} \mid \underbrace{l \cdot L_{l}^{k}(\eta)}_{=l^{r-2 \mu} \cdot \eta}=0\}
\end{aligned}
$$

Notes on the proof:

- Long and technical.
- The key insight is that the Kähler package is preserved under a "matroidal flip."
- Somehow, it is most natural to prove Hurd Lefschetz and Hodge-Riemann simultaneously

What is this good for?
Hard Lefscletz (HL) implies that, for $k \leq \frac{r-1}{2}$,

$$
\begin{aligned}
A^{k-1}(M)_{\mathbb{R}} & \longrightarrow A^{k}(M)_{\mathbb{R}} \\
\eta & \longrightarrow l \cdot \eta
\end{aligned}
$$

is injective.
Thus,

$$
A^{k}(M)_{\mathbb{R}}=P_{l}^{k} \oplus l \cdot A^{k-1}(M)_{\mathbb{R}}
$$

So we get the "Lefichetz decomposition"

$$
A^{k}(M)_{R}=P_{l}^{k} \oplus l \cdot P_{l}^{k-1} \oplus l^{2} P_{l}^{k-2} \oplus \cdots \oplus l^{k} P_{l}^{0}
$$

This de composition is orthogonal with respect to the Hodge-Rierann form Q_{l}^{k} :
If $\underbrace{\eta_{1} \in P_{l}^{k-i}}_{l^{r-2(h-i)} \cdot \eta_{1}=0}, \eta_{2} \in P_{l}^{k-j}$, where $i<j \leqslant k$, then

$$
\begin{aligned}
Q_{l}^{L}\left(l^{i}\right. & \left.\eta_{1}, l^{j} \eta_{2}\right) \\
& =(-1)^{L} \operatorname{deg}\left(l^{r-1-2 L} \cdot l^{i} \eta_{1} \cdot l^{j} \eta_{2}\right) \\
& =(-1)^{k} \operatorname{deg}(l^{j-i-1} \cdot \underbrace{l^{r-2(L-i)} \eta_{1} \cdot \eta_{2}}_{=0}) \\
& =0 .
\end{aligned}
$$

