The (Adipusito - Huh - Katz '15)
M simple matroid of rank r,

$$0 \le k \le \frac{r-1}{2}$$
, $l \in K(M)$.

$$(PD) \quad A^{L}(M) \times A^{r-1-L}(M) \longrightarrow \mathbb{Z}$$
$$(\mathcal{N}_{1}, \mathcal{N}_{2}) \longrightarrow \operatorname{deg}(\mathcal{N}_{1}, \mathcal{N}_{2})$$

$$(HL) \quad L_{\ell}^{k} : A^{k}(M)_{\mathbb{R}} \longrightarrow A^{r-1-k}(M)_{\mathbb{R}}$$
$$\mathcal{N} \longmapsto \ell^{r-1-2k} \cdot \mathcal{N}$$

$$(HR) \quad Q_{\ell}^{L} : A^{L}(M)_{R} \times A^{L}(M)_{R} \longrightarrow \mathbb{R}$$

$$(\eta_{1}, \eta_{2}) \longmapsto (-1)^{*} leg(l^{r-1-2L}, \eta_{1}, \eta_{2})$$

is positive definite on
$$P_{\ell}^{k} := \ker \left\lfloor \cdot \right\rfloor_{\ell}^{k}$$
.

Now, (HL) implies $A^{k}(M)_{\mathbb{R}} = P_{k}^{k} \oplus l \cdot A^{k-i}(M)_{\mathbb{R}}.$ for $k \leq \frac{r-i}{2}.$ Proof: Multiplication by l gives an injection

$$\frac{1}{A^{k-1}(M)_{R}} \xrightarrow{I} A^{k}(M)_{R}$$

So
$$l \cdot A^{k-1}(M)_{\mathbb{R}} \subseteq A^{k}(M)_{\mathbb{R}}$$
.
Now, let $\eta \in A^{k}(M)_{\mathbb{R}}$. Then
 $l \cdot L_{l}^{k}(\eta) = l^{r-2k} \cdot \eta \in A^{r-1-(k-1)}(M)_{\mathbb{R}}$
But $L_{l}^{k-1} \colon A^{k-1}(M)_{\mathbb{R}} \xrightarrow{\sim} A^{r-1-(k-1)}(M)_{\mathbb{R}}$ is an
isomorphism.
So Here is a unique $\Theta \in A^{k-1}(M)_{\mathbb{R}}$ such that
 $L_{l}^{k-1}(\Theta) = l^{r-2k} \cdot \eta$.

i.e.
$$l^{r-1-2(k-1)} \cdot \Theta = l^{r-2k} \cdot \eta$$

 $\implies l^{r-2k}(l \cdot \Theta) = l^{r-2k} \cdot \eta$
 $\implies l \cdot L_{l}^{k}(l \cdot \Theta) = l \cdot L_{l}^{k}(\eta).$

Thus,
$$\zeta := \eta - l \cdot \Theta \in ker(l \cdot L_{\ell}^{k}) = P_{\ell}^{k}$$

and $\eta = \zeta + l \cdot \Theta$.

So
$$A^{L}(M)_{R} = P_{l}^{L} \oplus l \cdot A^{L-1}(M)_{R}$$
.

Thus, we have the Lefschetz
decomposition

$$A^{k}(M)_{R} = P_{L}^{k} \oplus l \cdot P_{L}^{k-1} \oplus l^{2} \cdot P_{L}^{k-2} \oplus \cdots \oplus l^{k} \cdot P_{L}^{k}$$

Let's consider 2 special cases:

k=0 A°(M)_R ≅ R. (HL) gives the isomorphism Here, $L_{l}^{\circ}: A^{\circ}(M)_{\mathbb{R}} \longrightarrow A^{r-1}(M)_{\mathbb{R}}$ which is just mult. by l". $A^{r}(M) = O$ Since $P_{L}^{\circ}(M) = \ker \left(L \cdot L_{\ell}^{\circ} \right) = A^{\circ}(M)_{R}$

Now, (HR) tells as that

$$Q_{L}^{o}: \underbrace{A^{o}(M)_{R} \times A^{o}(M)_{R}}_{= R \times R} \longrightarrow R$$

$$= R \times R$$

$$(c_{1}, c_{2}) \longmapsto deg(c_{1}c_{2} l^{-1})$$

$$= c_{1}c_{2} deg(l^{-1})$$
is positive - definite on $P_{L}^{o} = A^{o}(M)_{R}$.
Thus,

$$deg(l^{-1}) > 0$$

$$\underbrace{k = 1}_{Here, our Lefschetz decomposition is}$$

$$A^{i}(M)_{R} = P_{L}^{i} \bigoplus l \cdot \underbrace{P_{L}^{o}}_{=A^{o}(M) \cdot R}$$

$$= P_{L}^{i} \bigoplus R \cdot l.$$

$$(HR) \text{ tells as that } Q_{L}^{i} \text{ is positive - definite on } P_{E}^{i}$$

On the other hand, $Q_{\ell}^{1}(\ell, \ell) = (-1) \deg(\ell^{\nu-3} \ell \cdot \ell)$ $= - \deg(\ell^{\nu-1})$ ≤ 0 So Q_{ℓ}^{1} is negative-definite on R.L.

Now, let $\gamma \in A'(M)_{\mathbb{R}}$ such that $\gamma \notin \mathbb{R} \cdot l$. Then the restriction of Q'_{e} to $\operatorname{Span}_{\mathbb{R}} \{ \gamma, l \} \subseteq A'(M)_{\mathbb{R}}$

will have matrix

$$\begin{pmatrix} Q_{\ell}'(\eta,\eta) & Q_{\ell}'(\eta,\ell) \\ Q_{\ell}'(\ell,\eta) & Q_{\ell}'(\ell,\ell) \end{pmatrix} = \begin{pmatrix} -\deg(\eta^{2}\ell^{r-3}) & -\deg(\eta\ell^{r-2}) \\ -\deg(\eta\ell^{r-2}) & -\deg(\ell^{r-1}) \end{pmatrix}.$$

Since the form is indefinite, the determinant must
be negative (one positive eigenvalue + one negative eigenvalue).
Thins,
$$deg(n^2l^{r-3}) \cdot deg(l^{r-1}) \leq deg(nl^{r-2})^2$$

Cor: Let $n, l \in A'(M)$, with l nef and $n \not\in Rl$.
Then
 $deg(n^2l^{r-3}) \cdot deg(l^{r-1}) \leq deg(nl^{r-2})^2$.
Proof: We already know this ulan l is ample.
If l is nef, then for any ample l' and $\epsilon > 0$,
 $l + \epsilon l'$
will be ample.
Apply the above discussion to $l + \epsilon l'$, then let $\epsilon \to 0$.

Cor: The coefficients
$$\mu^{k}$$
 of $\overline{z}\mu(q)$ as
 $\log_{1}-\cos(\alpha r, \dots r)$.
 $\mu^{k-1}\mu^{k+1} \in (\mu^{k})^{2}$
for $1 \leq k \leq r-2$.
Proof: When $k = r-2$, we have
 $\mu^{r-3}\mu^{r-1} = \deg(\alpha^{2}\beta^{r-3}) \deg(\beta^{r-1})$
 $\leq \deg(\alpha\beta^{r-2})^{2}$
 $= (\mu^{r-2})^{2}$
Since β is nef.
Now, if $k \leq r-2$, the coefficient μ^{k} is
undranged by truncation.
To complete the proof, apply this argument
to
trunc (M), trunc²(M), trunc³(M),....

Cor: The unsigned Whitrey numbers of the first kild, I wil, form a log-concave sequence.