Last week
Thu (Adipnsito-Hah-Katz'15)
M simple matiad of monk r, $0 \leq k \leqslant^{1--1} 2, \quad l \in K(\mu)$.
(PD)

$$
\begin{aligned}
A^{L}(M) \times A^{r-1-k}(M) & \longrightarrow \mathbb{Z} \\
\left(\eta_{1}, \eta_{2}\right) & \longmapsto \operatorname{deg}\left(\eta_{1} \cdot \eta_{2}\right)
\end{aligned}
$$

is a perfect pairing
$(1+L)$

$$
\begin{aligned}
& L_{l}^{k}: A^{k}(M)_{\mathbb{R}} \longrightarrow A^{r-1-k}(M)_{R} \\
& \eta \longmapsto l^{r-1-2 k} \cdot \eta
\end{aligned}
$$

is an isomaphlism of \mathbb{R}-vector spaces.
$(H R) \quad Q_{l}^{k}: A^{k}(M)_{R} \times A^{k}(M)_{\mathbb{R}} \rightarrow \mathbb{R}$

$$
\left(\eta_{1}, \eta_{2}\right) \longmapsto(-1)^{2} \operatorname{leg}\left(l^{r-1-2} \cdot \eta_{2} \cdot \eta_{2}\right)
$$

is positive definite on $P_{l}^{k}:=\operatorname{ker}=\underbrace{l \cdot L_{l}^{L} \operatorname{ly} l^{-2 l}}_{m}$.

Now, (HL) implies

$$
A^{k}(M)_{\mathbb{R}}=P_{l}^{k} \oplus l \cdot A^{k-1}(M)_{\mathbb{R}}
$$

for $k \leq \frac{r-1}{2}$.
Proof: Multiplication by l gives an injection

$$
A^{k-1}(M)_{\mathbb{R}} \xrightarrow{\bullet l} A^{k}(M)_{\mathbb{R}}
$$

So $\quad l \cdot A^{k-1}(M)_{\mathbb{R}} \subseteq A^{k}(M)_{\mathbb{R}}$.
Now, let $\eta \in A^{k}(M)_{\mathbb{R}}$. Then

$$
l \cdot L_{l}^{k}(\eta)=l^{r-2 k} \cdot \eta \in A^{r-1-(k-1)}(M)_{\mathbb{R}}
$$

But $L_{l}^{k-1}: A^{k-1}(M)_{\mathbb{R}} \xrightarrow{\sim} A^{r-1-(L-1)}(M)_{\mathbb{R}}$ is an isomorphism.
So there is a unique $\theta \in A^{k-1}(M)_{\mathbb{R}}$ such that

$$
L_{l}^{k-1}(\theta)=l^{r-2 k} \cdot \eta
$$

i.e. $\quad l^{r-1-2(m-1)} \cdot \theta=l^{r-2 l} \cdot \eta$

$$
\begin{aligned}
& \Rightarrow l^{r-2 l}(l \cdot \theta)=l^{r-2 k} \cdot \eta \\
& \Rightarrow l \cdot L_{l}^{k}(l \cdot \theta)=l \cdot L_{l}^{k}(\eta) .
\end{aligned}
$$

Thus, $\quad \zeta:=\eta-l \cdot \theta \in \operatorname{ker}\left(l \cdot L_{l}^{k}\right)=P_{l}^{l}$
and

$$
\eta=\zeta+l \cdot \theta .
$$

So

$$
A^{l}(M)_{\mathbb{R}}=P_{l}^{l} \oplus l \cdot A^{L-1}(M)_{\mathbb{R}} .
$$

Thus, we have the Lefschetz decomposition

$$
A^{k}(M)_{\mathbb{R}}=P_{l}^{k} \oplus l \cdot P_{l}^{k-1} \oplus l^{2} \cdot P_{l}^{k-2} \oplus \cdots \oplus l^{k} \cdot P_{l}^{0}
$$

Last time: This decomposition is orthogonal with respect to Q_{l}^{k}.

Let's consider 2 special cases:

$$
k=0
$$

Here, $A^{0}(M)_{\mathbb{R}} \cong \mathbb{R} . \quad(H L)$ gives the isomorphism

$$
L_{l}^{0}: A^{0}(M)_{\mathbb{R}} \longrightarrow A^{r-1}(M)_{\mathbb{R}}
$$

which :s just malt. by e^{r-1}.
Since $A^{2}(M)_{\mathbb{R}}=0$,

$$
P_{l}^{0}(M)=\operatorname{ker}(\underbrace{l \cdot L_{l}^{0}}_{\text {mount by } l^{r}})=A^{0}(M)_{\mathbb{R}}
$$

Now, (HR) tells as that

$$
\begin{aligned}
Q_{l}^{0}: \underbrace{A^{0}(M)_{\mathbb{R}} \times A^{0}(M)_{\mathbb{R}}} & \longrightarrow \mathbb{R} \\
=\mathbb{R} \times \mathbb{R} & \longrightarrow \operatorname{deg}\left(c_{1} c_{2} l^{r-1}\right) \\
& \left.=c_{1} c_{2} \operatorname{deg}\left(c_{2}\right) \longmapsto l^{r-1}\right)
\end{aligned}
$$

is positive-definite on $P_{l}^{0}=A^{0}(M)_{\mathbb{R}}$.
Thus,

$$
\operatorname{deg}\left(l^{r-1}\right)>0
$$

$$
k=1
$$

Here, our Lefschet z decomposition is

$$
=P_{l}^{\prime} \oplus \mathbb{R} \cdot l
$$

(HR) tells us that Q_{l}^{\prime} is positive-definite on P_{l}^{\prime}.

On the otter hand,

$$
\begin{aligned}
Q_{l}^{\prime}(l, l) & =(-1) \operatorname{deg}\left(l^{r-3} \cdot l \cdot l\right) \\
& =-\operatorname{deg}\left(l^{r-1}\right) \\
& <0
\end{aligned}
$$

So Q_{l}^{\prime} is negathe-definite on $\mathbb{R} \cdot l$.

Now, let $\eta \in A^{\prime}(M)_{\mathbb{R}}$ such that $\eta \notin \mathbb{R} \cdot l$.
Then the restriction of Q_{l}^{\prime} to

$$
\operatorname{span}_{\mathbb{R}}\{\eta, l\} \subseteq A^{\prime}(M)_{\mathbb{R}}
$$

will have matrix

$$
\left(\begin{array}{ll}
Q_{l}^{\prime}(\eta, \eta) & Q_{l}^{\prime}(\eta, l) \\
Q_{l}^{\prime}(l, \eta) & Q_{l}^{\prime}(l, l)
\end{array}\right)=\left(\begin{array}{ll}
-\operatorname{deg}\left(\eta^{2} l^{r-3}\right) & -\operatorname{deg}\left(\eta l^{r-2}\right) \\
-\operatorname{deg}\left(\eta l^{r-2}\right) & -\operatorname{deg}\left(l^{r-1}\right)
\end{array}\right) .
$$

Since the form is indefinite, the determinant must be negative (one positive eigenvalue + one negate eiganombe).

Thus,

$$
\operatorname{deg}\left(\eta^{2} l^{r-3}\right) \cdot \operatorname{deg}\left(l^{r-1}\right)<\operatorname{deg}\left(\eta l^{r-2}\right)^{2}
$$

Cor: Let $\eta, l \in A^{\prime}(M)$, with l nef and $\eta \in \mathbb{R} \cdot l$. Then

$$
\operatorname{deg}\left(\eta^{2} l^{r-3}\right) \cdot \operatorname{deg}\left(l^{r-1}\right) \leq \operatorname{deg}\left(\eta l^{r-2}\right)^{2} .
$$

Proof: We already know this allen ℓ is ample. If l is ref, then for any ample l^{\prime} and $\epsilon>0$,

$$
\ell+\epsilon \ell^{\prime}
$$

will be ample.
Apply the above discussion to $l+\epsilon l^{\prime}$, then let $\in \rightarrow 0$.

Cor: The coefficients μ^{k} of $\bar{x}_{M}(q)$ are log-concare, i.e.

$$
\mu^{k-1} \mu^{k+1} \leq\left(\mu^{k}\right)^{2}
$$

for $1 \leq k \leq r-2$.

Proof: when $k=r-2$, es hare

$$
\begin{aligned}
\mu^{r-3} \mu^{r-1} & =\operatorname{deg}\left(\alpha^{2} \beta^{r-3}\right) \operatorname{deg}\left(\beta^{r-1}\right) \\
& \leq \operatorname{deg}\left(\alpha \beta^{r-2}\right)^{2} \\
& =\left(\mu^{r-2}\right)^{2}
\end{aligned}
$$

Since β is ref.
Now, if $k \leq r-2$, the coefficient μ^{k} is uncharged by truncation.
To complete the proof, apply this argument
to $\operatorname{tranc}(M), \quad \operatorname{tranc}^{2}(M), \operatorname{tranc}^{3}(M), \ldots$

Cor: The unsigned whitney numbers of the first hind, $\left|w_{i}\right|$, form a log-concave Sequence.

