The Bergman fun of a matroid Let M be a loopless matroid on ground set E. Let ZE be the free abelian group with standard basis {e; lieE}. For each subset $S \subseteq E$, define $e_{S} \coloneqq \sum_{i \in S} e_{i}$ We let $N := \frac{Z'E}{\langle e_E \rangle} \cong \frac{Z''}{\langle (l,l,...,l) \rangle} \cong \frac{Z''}{\langle e_E \rangle}$ Requires choice of basis and $N_{R} := N \otimes \mathbb{R}$ $\cong \mathbb{R}^{n}/((1,1,...,1)) \cong \mathbb{R}^{n}$ Def: If $F = (\emptyset \notin F_1 \notin \cdots \# F_k \notin E)$ is a k-step flag of (non-empty, proper) flats, we let $\sigma_{\mathfrak{F}} := \left\{ \begin{array}{l} \overset{\sim}{\underset{i=1}{2}} a_i e_{\mathcal{F}_i} \\ \end{array} \middle| a_i \in \mathbb{R}_{\ge 0} \right\} \quad \subseteq N_{\mathcal{R}}$ be the convex cone generated by eF,..., eFL. Note: OF is unimodular. In particular, dim OF = # steps. Def: The Bergman fun of M is $\mathbb{Z}_{M} := \{ \sigma_{\mathfrak{F}} \mid \mathfrak{F} \text{ is a flag of flats in } M \}.$

Note: The name "fan" is appropriate: • Every face of σ_F is σ_F , where F' is obtained by removing flots from F. • $\sigma_F \cap \sigma_E$ is σ_F , where F' is the flag made up of flots in both F and E. So Ξ_M is a rational polyhedral fan.

 $e_1 + e_2 + e_3 = 0$

 $\underline{\mathsf{Ex}}$: $\mathsf{U}_{3,3}$

Observations

- Maximal cones correspond to complete flags.
 In particular, each maximal cone has dimension rk(M)-1. Therefore, EM is <u>pure</u>.
- The only matroid for which Σ_M is complete is $M = U_{n,n}$.
- Maximal cones in Z_{Un,n} correspond to permutations
 of [n]. Thus, Z_{Un,n} is the normal fun to the
 (n-1)-dimensional permutohedron.

• If M is any matroid on [n], then EM is a subfan of ZUn,n

Connectivity in codimension 1

Def: A pure-dimensional fun Σ is <u>connected</u> in <u>codimension</u> 1 if for any maximal cones σ and σ' , there exists a Sequence $\sigma > T_1 \subset \sigma_1 > T_2 \subset \cdots > T_{d-1} \subset \sigma_{d-1} > T_d \subset \sigma'$ where • $\sigma_{1, \dots, \sigma_{d-1}}$ are maximal cores • $T_{1, \dots, \tau_{d}}$ are codimension 1 cores \rightarrow Abbreviate this as $\sigma \sim \sigma'$. Clearly it's an equivalence relation. Conn. in codim. (=> only one equilablence class.

<u>Non-Ex</u>:

Thm: Let M be a loopless matroid of rank r. Then Σ_M is connected in codimension 1.

Proof: We prove this by induction on r.
If
$$rle(M) = 2$$
, then Σ_M has dimension I and
every I-dimensional from is connected in codimension I.
In general, let
 $F = (\emptyset \notin F_1 \notin \cdots \notin F_{r-1} \notin E)$
 $G = (\emptyset \notin G_1 \notin \cdots \notin G_{r-1} \notin E)$
be maximal flags. We wish to show
 $\sigma_F \sim \sigma_E$.

<u>Case 1</u>: $F_1 = G_1$. Apply the inductive hypothesis to M/F_1 to see $\sigma_{\mp} \sim \sigma_{\mathcal{C}}$ via a sequence of cones corresponding to flags all starting with F_1 .

Case 2:
$$F_1 \neq G_1$$

Then $F_1 \vee G_1 = cl(F_1 \cup G_1)$ is a rank 2 flat.

Now, let
$$\mathcal{H}$$
 be any $(r-2)$ -step flag
that begins with $F_1 \vee G_1$:
 $\mathcal{H}= \left(\emptyset \in F_1 \vee G_1 \in H_3 \in \cdots \in H_{r-1} \notin E \right).$

Then we extend \mathcal{H} to a maximal flag in two ways: $\mathcal{H}_{F_i} = Add F_i$ to \mathcal{H} $\mathcal{H}_{G_i} = Add G_i$ to \mathcal{H} .

Now,
$$\sigma_{\mathcal{H}_{F_i}} > \sigma_{\mathcal{H}} \subset \sigma_{\mathcal{H}_{G_i}}$$
, so $\sigma_{\mathcal{H}_{F_i}} \sim \sigma_{\mathcal{H}_{G_i}}$.

Thus,

OF NOHE NOHE NOG. Casel Casel Ð

If
$$\sigma$$
 is a unimodular cone and $\tau c \sigma$ is
a funcet (codim 1 funce), then there is a unique
vary (1-dim funce) of σ which is not in τ .
Let $e_{\sigma/\tau}$ be the primitive generator of this way.
Ex: $\sigma = \sigma_F$. A funcet τ of σ corresponds to
removing a flat F from F. Then
 $e_{\sigma/\tau} = e_F$

Def: A k-dimensional Minkowski veight on a
unimodular fan
$$\Sigma$$
 is a function
 $w: \Sigma_k \longrightarrow \mathbb{Z}$
k-dimensional cones in Σ
satisfying the balancing condition: for
every (k-1)-dimensional cone T in Σ ,
 $\sum_{\sigma \in \Sigma_k} \omega(\sigma) e_{\sigma/T} \in \mathbb{R} \cdot T$
 $\sigma \in T$

Important later: The set of all k-dimensional
Minkowski weights on
$$\Sigma$$
, denoted
 $MW_k(\Sigma) \subseteq \mathbb{Z}^{\Sigma_k}$
is a group under addition.

For now:

Thm: Let M be a loopless matroid of rank r. Then

$$MW_{r-1}(\mathcal{Z}_M) \cong \mathbb{Z}$$
.
That is, every top-dimensional Minkowski
weight is constant.