Recall: A k-dimensional Minkowski veight on a
unimodular fan
$$\Sigma$$
 is a function
 $\omega: \Sigma_{k} \longrightarrow \mathbb{Z}$
_{rk}
_{rk}
_{rk}

Satisfying the balancing condition: for
every
$$(k-1)$$
-dimensional cone T in \mathcal{E} ,
 $\sum_{\sigma \in \mathcal{E}_k} w(\sigma) e_{\sigma/T} \in \mathbb{R} \cdot T$.

$$\frac{\text{Recall }}{\text{N}} \cdot \text{For } S \subseteq E, \text{ unite } e_{S} \coloneqq E \in \mathbb{Z}^{E}$$
$$\cdot N \coloneqq \mathbb{Z}^{E} / \langle e_{E} \rangle, N_{\mathbb{R}} \coloneqq N \otimes \mathbb{R}$$

Let G₁,..., G_m be the complete list of rank l flats such that

 $F_{l-1} \not\subseteq G_i \not\subseteq F_{l}$

and let
$$F_i$$
 be the flag obtained from
 F by inserting G_i in position l .
Then $F_{i_1,...,}F_m$ are all of the maximal
flags refining F_i so $\sigma_{F_i},...,\sigma_{F_m}$ are
all of the maximal cones containing T .
If $w \in MW_{r-i}(\mathcal{E}_m)$, then the balancing
condition says
 $\sum_{i=1}^{m} w(\sigma_{F_i}) e_{G_i} \in \mathbb{R} \cdot T$
 $span \{e_{F_i}, e_{F_2}, ..., e_{F_m}\}$

Since $F_{g-1} \subseteq G_i$ for every i, we can write

$$e_{G_i} = e_{G_i \setminus F_{\ell-1}} + e_{F_{\ell-1}}$$

So the balancing condition becomes

$$\sum_{i=1}^{\infty} \omega(\sigma_{\overline{f}_i}) e_{G_i \setminus \overline{f_{2-1}}} \in \mathbb{R} \cdot T$$

Since
$$e_{F_{1}}, e_{F_{2} \setminus F_{1}}, e_{F_{3} \setminus F_{2}}, \dots, e_{F_{n_{2}} \setminus F_{n_{3}}}$$
 is a
basis of $\mathbb{R} \cdot \mathbb{T}$, we have

 $(\bigstar) \stackrel{\mathbb{Z}}{\underset{i=1}{2}} w(\sigma_{\overline{5}_{1}}) e_{G_{1} \setminus F_{2+1}} = c_{1} e_{F_{1}} + c_{2} e_{F_{2} \setminus F_{1}} + \dots + c_{n_{2}} e_{F_{n_{2}} \setminus F_{n_{3}}}$
for some $c_{1}, \dots, c_{n-2} \in \mathbb{R}$.

Now, by flat axiom (F3) applied to MIF₂,
 $F_{1} \setminus F_{2-1} = \prod_{i=1}^{n} G_{1} \setminus F_{2-1}$.

Look again at (\bigstar) :

• On the left, this vector has support $F_{2} \setminus F_{2-1}$
• On the right, the basis vectors $e_{F_{2} \cap F_{2}}$ have
disjoint support.

So $c_{1} = 0$ for $i \neq l$, and

$$\sum_{i=1}^{m} \omega(\sigma_{\overline{f_i}}) e_{G_i \setminus \overline{F_{\ell-1}}} = c_{\ell} e_{\overline{F_{\ell}} \setminus \overline{F_{\ell-1}}}.$$

The degree map
We previously asserted that there is an
isomorphism
deg:
$$A^{r-1}(M) \longrightarrow \mathbb{Z}$$

such that deg $(\alpha^{r-1}) = 1$.
Recall: For every complete flag
 $F = (\emptyset \in F, \subseteq \cdots \subseteq F_{r-1} \in E),$
we have

$$X_{\mathcal{F}} = X_{\mathcal{F}_{i}} \cdots X_{\mathcal{F}_{r-i}} = \alpha^{r-i}.$$

Lemma: For
$$0 \leq k \leq r-1$$
, there is an isomorphism
 $t_k : MW_k(\Xi_M) \longrightarrow Hom_Z(A^h(M), Z)$
 $\omega \longmapsto (X_F \mapsto \omega(\sigma_F))$
for each k-step flag F

Proof iden: Let
$$w: (\Sigma_M)_k \longrightarrow \mathbb{Z}$$

Check that the balancing condition is precisely the statement that $x_F \mapsto w(\sigma_F)$

is nell-defined modulo the relations on A'(M).

This lets us define a cap product

$$A^{L}(M) \times MW_{1}(\Sigma_{M}) \longrightarrow MW_{1-L}(\Sigma_{M})$$

 $(\gamma, w) \longmapsto \gamma \sim \cdots = (\sigma_{F} \mapsto (t_{L}w)(\gamma \times_{F}))$
 $(\eta, w) \longmapsto \gamma \sim \cdots = (\sigma_{F} \mapsto (t_{L}w)(\gamma \times_{F}))$
 $(H-(A^{T}, Z) \in A^{2}(A))$
 $We've shown MW_{r-1}(\Sigma_{M}) \cong \mathbb{Z}.$
Clearly, $MW_{0}(\Sigma_{M}) \cong \mathbb{Z}$ also.
 \underline{Def} : The degree map is
 $deg: A^{r-1}(M) \longrightarrow MW_{0}(\Sigma_{M}) \cong \mathbb{Z}.$
 $\gamma \longmapsto \gamma \sim 1$

We just need to check that $\alpha^{r-1} \wedge 1 = 1$. Let F be any complete flag, so $\alpha^{r-1} = x_F$.

Then
$$\alpha^{r-1} \cap 1 = x_{\overline{f}} \cap 1$$
 is the
O-dim Minhoushi weight
 $(t_{r-1}1)(x_{\overline{f}}) = 1(\sigma_{\overline{f}}) = 1.$

Why should we care about
$$\Sigma_M$$
?
Perspective 1: Tropical geometry
Let Z be a pure d-dimensional notional
polyhedral fan, and $w: \Sigma_A \to \mathbb{Z}_{>0}$ a positive
weighting of its top-dimensional cores.
Then (Σ, w) is a tropical variety if
· Σ is connected in codimension 1
· $w \in MW_A(\Sigma)$, :e. (Σ, w) is "balanced"
So we've shown that $(\Sigma_M, 1)$ is a tropical
variety.
· If $M=M(A)$ is representable (over any field),
then $Trop(PU_A) = (\Sigma_M, 1)$
· $[Katz-Rayne 'II]$ Conversely, $Trop(X) = (\Sigma_M, 1)$
for some K-variety X if and only if M is
K-representable.
· $[Finh 'I3]$ In a precise sense, Bergman fours are
precisely the "linear" tropical varieties.

<u>Perspective 2</u>: Toric Geometry The fan Σ_M defines a toric variety $X(\Sigma_M)$. $\cdot \Sigma_M$ is unimodular $\Rightarrow X(\Sigma_M)$ is smooth $\cdot \text{If } M \neq U_{n,n}$, then Σ_M is not complete $\Rightarrow X(\Sigma_M)$ is not compact

If M has ground set [n], then
$$\Sigma_M$$
 is
a subfan of $\Sigma_{U_{n,n}}$. This gives an open
embedding
 $X(\Sigma_M) \longrightarrow X(\Sigma_{U_{n,n}}).$

The variety $X(\Sigma_{U_{n,n}})$ is the <u>permutohedral</u> <u>variety</u>. • Consider the arrangement of all n coordinate hyperplanes in \mathbb{P}^{n-1} . The nonderful compactification of the complement (= G_m^{n-1}) is $X(\Sigma_{U_{n,n}})$.

• Suppose M is K-representable. Let
A be a configuration in a vector space
V such that
$$M = M(A)$$
.
Then we have $K^n \rightarrow V$, or dually
 $V^* \rightarrow K^n$.
Thus,
 $\mathbb{P}V^* \rightarrow \mathbb{P}^{n-1}$.

• [Feichtner-Ynzvinsky '04] In the above
situation, the image of
$$Y_A$$
 is contained
in $X(\Sigma_M)$. Moreover,
 $L_A: Y_A \longrightarrow X(\Sigma_M)$
is a Chow equivalence: the induced map
 $L_A: A^{*}(X_M) \longrightarrow A^{*}(Y_A) = A^{*}(M)$

is an isomorphism.

 $X(\Sigma_M)$, by contrast, is smooth but not projective, and has dimension n-1.

• [Adipmsito-Huh-Katz '15] If Y is a
smooth projective K-variety and
$$Y \longrightarrow X(z_M)$$

is a Chow equivalence, then
M is K-representable.