Math 315 Homework #1 4/7/2017

Abbott: 1.2.5, 1.2.9, 1.2.12, 1.3.3

1.2.5 (De Morgan's Laws) Let *A* and *B* be subsets of \mathbb{R} .

- (a) If $x \in (A \cap B)^c$, explain why $x \in A^c \cup B^c$. This shows that $(A \cap B)^c \subseteq A^c \cup B^c$.
- (b) Prove the reverse inclusion $(A \cap B)^c \supseteq A^c \cup B^c$, and conclude that $(A \cap B)^c = A^c \cup B^c$.
- (c) Show $(A \cup B)^c = A^c \cap B^c$ by demonstrating inclusion both ways.

1.2.9 Given a function $f: D \to \mathbb{R}$ and a subset $B \subseteq \mathbb{R}$, let $f^{-1}(B)$ be the set of all points from the domain *D* that get mapped into *B*; that is, $f^{-1}(B) = \{x \in D : f(x) \in B\}$. This set is called the *preimage* of *B*.

- (a) Let $f(x) = x^2$. If A is the closed interval [0,4] and B is the closed interval [-1,1], find $f^{-1}(A)$ and $f^{-1}(B)$. Does $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$ in this case? Does $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$?
- (b) The good behavior of preimages demonstrated in (a) is completely general. Show that for an arbitrary function $g: \mathbb{R} \to \mathbb{R}$, it is always true that $g^{-1}(A \cap B) = g^{-1}(A) \cap g^{-1}(B)$ and $g^{-1}(A \cup B) = g^{-1}(A) \cup g^{-1}(B)$ for all sets $A, B \subseteq \mathbb{R}$.

1.2.12 Let $y_1 = 6$, and for each $n \in \mathbb{N}$ define $y_{n+1} = (2y_n - 6)/3$.

- (a) Use induction to prove that the sequence satisfies $y_n > -6$ for all $n \in \mathbb{N}$.
- (b) Use another induction argument to show the sequence $(y_1, y_2, y_3, ...)$ is decreasing.

1.3.3

(a) Let *A* be nonempty and bounded below, and define

 $B = \{b \in \mathbb{R} : b \text{ is a lower bound for } A\}.$

Show that $\sup B = \inf A$.

(b) Use (a) to explain why there is no need to assert that greatest lower bounds exist as part of the Axiom of Completeness.