Math 315 Homework #10 5/12/2017

Abbott: 3.3.2, 3.3.4 (Extra Credit: 3.3.7)

3.3.2 Decide which of the following sets are compact. For those that are not compact, show how Definition 3.3.1 breaks down. In other words, give an example of a sequence contained in the given set that does not possess a subsequence converging to a limit in the set.

(a) **N**.

(b) $\mathbb{Q} \cap [0,1]$.

(c) The Cantor set.

(d) $\{1+1/2^2+1/3^2+\cdots+1/n^2:n\in\mathbb{N}\}.$

(e) $\{1, 1/2, 2/3, 3/4, 4/5, \ldots\}$.

3.3.4 Assume *K* is compact and *F* is closed. Decide if the following sets are definitely compact, definitely closed, both, or neither.

- (a) $K \cap F$
- (b) $\overline{F^c \cap K^c}$
- (c) $K \setminus F = \{x \in K : x \notin F\}$
- (d) $\overline{K \cap F^c}$

3.3.7 (Extra Credit - No rewrites) As some more evidence of the surprising nature of the Cantor set, follow these steps to show that the sum $C + C = \{x + y : x, y \in C\}$ is equal to the closed interval [0,2]. (Keep in mind that *C* has zero length and contains no intervals.)

Because $C \subseteq [0,1]$, $C + C \subseteq [0,2]$, so we only need to prove the reverse inclusion $[0,2] \subseteq \{x + y : x, y \in C\}$. Thus, given $s \in [0,2]$, we must find two elements $x, y \in C$ satisfying x + y = s.

- (a) Show that there exist $x_1, y_1 \in C_1$ for which $x_1 + y_1 = s$. Show in general that, for an arbitrary $n \in \mathbb{N}$, we can always find $x_n, y_n \in C_n$ for which $x_n + y_n = s$.
- (b) Keeping in mind that the sequences (x_n) and (y_n) do not necessarily converge, show how they can nevertheless be used to produce the desired *x* and *y* in *C* satisfying x + y = s.