Abbott: 3.3.2, 3.3.4 (Extra Credit: 3.3.7)
3.3.2 Decide which of the following sets are compact. For those that are not compact, show how Definition 3.3.1 breaks down. In other words, give an example of a sequence contained in the given set that does not possess a subsequence converging to a limit in the set.
(a) \mathbb{N}.
(b) $\mathbb{Q} \cap[0,1]$.
(c) The Cantor set.
(d) $\left\{1+1 / 2^{2}+1 / 3^{2}+\cdots+1 / n^{2}: n \in \mathbb{N}\right\}$.
(e) $\{1,1 / 2,2 / 3,3 / 4,4 / 5, \ldots\}$.
3.3.4 Assume K is compact and F is closed. Decide if the following sets are definitely compact, definitely closed, both, or neither.
(a) $K \cap F$
(b) $\overline{F^{c} \cap K^{c}}$
(c) $K \backslash F=\{x \in K: x \notin F\}$
(d) $\overline{K \cap F^{c}}$
3.3.7 (Extra Credit - No rewrites) As some more evidence of the surprising nature of the Cantor set, follow these steps to show that the sum $C+C=\{x+y: x, y \in C\}$ is equal to the closed interval $[0,2]$. (Keep in mind that C has zero length and contains no intervals.)
Because $C \subseteq[0,1], C+C \subseteq[0,2]$, so we only need to prove the reverse inclusion $[0,2] \subseteq\{x+y: x, y \in C\}$. Thus, given $s \in[0,2]$, we must find two elements $x, y \in C$ satisfying $x+y=s$.
(a) Show that there exist $x_{1}, y_{1} \in C_{1}$ for which $x_{1}+y_{1}=s$. Show in general that, for an arbitrary $n \in \mathbb{N}$, we can always find $x_{n}, y_{n} \in C_{n}$ for which $x_{n}+y_{n}=s$.
(b) Keeping in mind that the sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$ do not necessarily converge, show how they can nevertheless be used to produce the desired x and y in C satisfying $x+y=s$.

