Math 315
Homework \#12
5/19/2017
Abbott: 4.2.7, 4.2.8
4.2.7 Let $g: A \rightarrow \mathbb{R}$ and assume that f is a bounded function on A, in the sense that there exists $M>0$ satisfying $|f(x)| \leq M$ for all $x \in A$.
Show that if $\lim _{x \rightarrow c} g(x)=0$, then $\lim _{x \rightarrow c} g(x) f(x)=0$ as well.
4.2.8 Compute each limit or state that it does not exist. Use the tools developed in this section to justify each conclusion.
(a) $\lim _{x \rightarrow 2} \frac{|x-2|}{x-2}$
(b) $\lim _{x \rightarrow 7 / 4} \frac{|x-2|}{x-2}$
(c) $\lim _{x \rightarrow 0}(-1)^{[[1 / x]]}$
(d) $\lim _{x \rightarrow 0} \sqrt[3]{x}(-1)^{[[1 / x]]}$

