Abbott: 4.3.1, 4.3.9, 4.4.3, 4.4.9
4.3.1 Let $g(x)=\sqrt[3]{x}$.
(a) Prove that g is continuous at $c=0$.
(b) Prove that g is continuous at a point $c \neq 0$. (The identity

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

will be helpful.)
4.3.9 Assume $h: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on \mathbb{R} and let $K=\{x: h(x)=0\}$. Show that K is a closed set.
4.4.3 Show that $f(x)=1 / x^{2}$ is uniformly continuous on the set $[1, \infty)$ but not on the set $(0,1]$.
4.4.9 (Lipschitz Functions) A function $f: A \rightarrow \mathbb{R}$ is called Lipschitz if there exists a bound $M>0$ such that

$$
\left|\frac{f(x)-f(y)}{x-y}\right| \leq M
$$

for all $x, y \in A$. Geometrically speaking, a function f is Lipschitz if there is a uniform bound on the magnitude of the slopes of lines drawn through any two points on the graph of f.
(a) Show that if $f: A \rightarrow \mathbb{R}$ is Lipschitz, then it is uniformly continuous on A.
(b) Is the converse statement true? Are all uniformly continuous functions necessarily Lipschitz?

