Math 315 Homework #13 5/23/2017

Abbott: 4.3.1, 4.3.9, 4.4.3, 4.4.9

4.3.1 Let $g(x) = \sqrt[3]{x}$.

- (a) Prove that *g* is continuous at c = 0.
- (b) Prove that *g* is continuous at a point $c \neq 0$. (The identity

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

will be helpful.)

4.3.9 Assume $h: \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and let $K = \{x : h(x) = 0\}$. Show that *K* is a closed set.

4.4.3 Show that $f(x) = 1/x^2$ is uniformly continuous on the set $[1, \infty)$ but not on the set (0, 1].

4.4.9 (Lipschitz Functions) A function $f: A \to \mathbb{R}$ is called *Lipschitz* if there exists a bound M > 0 such that

$$\left|\frac{f(x) - f(y)}{x - y}\right| \le M$$

for all $x, y \in A$. Geometrically speaking, a function f is Lipschitz if there is a uniform bound on the magnitude of the slopes of lines drawn through any two points on the graph of f.

- (a) Show that if $f: A \to \mathbb{R}$ is Lipschitz, then it is uniformly continuous on *A*.
- (b) Is the converse statement true? Are all uniformly continuous functions necessarily Lipschitz?