Math 315
Homework \#14
5/30/2017
Abbott: 4.5.3, 4.5.7, 5.2.7, 5.2.10
4.5.3 A function f is increasing on A if $f(x) \leq f(y)$ for all $x<y$ in A. Show that if f is increasing on $[a, b]$ and satisfies the intermediate value property (Definition 4.5.3), then f is continuous on $[a, b]$.
4.5.7 Let f be a continuous function on the closed interval $[0,1]$ with range also contained in $[0,1]$. Prove that f must have a fixed point; that is, show $f(x)=x$ for at least one value of $x \in[0,1]$.
5.2.7 Let

$$
g_{a}(x)= \begin{cases}x^{a} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Find a particular (potentially noninteger) value for a so that
(a) g_{a} is differentiable on \mathbb{R} but such that g_{a}^{\prime} is unbounded on $[0,1]$.
(b) g_{a} is differentiable on \mathbb{R} with g_{a}^{\prime} continuous but not differentiable at zero.
(c) g_{a} is differentiable on \mathbb{R} and g_{a}^{\prime} is differentiable on \mathbb{R}, but such that $g_{a}^{\prime \prime}$ is not continuous at zero.
5.2.10 Recall that a function $f:(a, b) \rightarrow \mathbb{R}$ is increasing on (a, b) if $f(x) \leq f(y)$ whenever $x<y$ in (a, b). A familiar mantra from calculus is that a differentiable function is increasing if its derivative is positive, but this statement requires some sharpening in order to be completely accurate.
Show that the function

$$
g(x)= \begin{cases}x / 2+x^{2} \sin (1 / x) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is differentiable on \mathbb{R} and satisfies $g^{\prime}(0)>0$. Now, prove that g is not increasing over any open interval containing 0 .
In the next section we will see that f is indeed increasing on (a, b) if and only if $f^{\prime}(x) \geq 0$ for all $x \in(a, b)$.

