Abbott: 5.3.7, 5.3.8

5.3.7 A fixed point of a function f is a value x where $f(x)=x$. Show that if f is differentiable on an interval with $f^{\prime}(x) \neq 1$, then f can have at most one fixed point.
5.3.8 Assume f is continuous on an interval containing zero and differentiable for all $x \neq 0$. If $\lim _{x \rightarrow 0} f^{\prime}(x)=L$, show $f^{\prime}(0)$ exists and equals L.

