Abbott: 6.2.1, 6.2.3 (Extra Credit: 6.2.12)

6.2.1 Let

$$
f_{n}(x)=\frac{n x}{1+n x^{2}}
$$

(a) Find the pointwise limit of $\left(f_{n}\right)$ for all $x \in(0, \infty)$.
(b) Is the convergence uniform on $(0, \infty)$?
(c) Is the convergence uniform on $(0,1)$?
(d) Is the convergence uniform on $(1, \infty)$?
6.2.3 For each $n \in \mathbb{N}$ and $x \in[0, \infty)$, let

$$
g_{n}(x)=\frac{x}{1+x^{n}} \quad \text { and } \quad h_{n}(x)= \begin{cases}1 & \text { if } x \geq 1 / n \\ n x & \text { if } 0 \leq x<1 / n\end{cases}
$$

Answer the following questions for the sequences $\left(g_{n}\right)$ and $\left(h_{n}\right)$:
(a) Find the pointwise limit on $[0, \infty)$.
(b) Explain how we know that the convergence cannot be uniform on $[0, \infty)$.
(c) Choose a smaller set over which the convergence is uniform and supply an argument to show that this is indeed the case.
6.2.12 (Extra Credit) Review the construction of the Cantor set $C \subseteq[0,1]$ from Section
3.1. This exercise makes use of results and notation from this discussion.
(a) Define $f_{0}(x)=x$ for all $x \in[0,1]$. Now, let

$$
f_{1}(x)= \begin{cases}(3 / 2) x & \text { for } 0 \leq x \leq 1 / 3 \\ 1 / 2 & \text { for } 1 / 3<x<2 / 3 \\ (3 / 2) x-1 / 2 & \text { for } 2 / 3 \leq x \leq 1\end{cases}
$$

Sketch f_{0} and f_{1} over $[0,1]$ and observe that f_{1} is continuous, increasing, and is constant on the middle third $(1 / 3,2 / 3)=[0,1] \backslash C_{1}$.
(b) Construct f_{2} by imitating this process of flattening out the middle third of each nonconstant segment of f_{1}. Specifically, let

$$
f_{2}(x)= \begin{cases}(1 / 2) f_{1}(3 x) & \text { for } 0 \leq x \leq 1 / 3 \\ f_{1}(x) & \text { for } 1 / 3<x<2 / 3 \\ (1 / 2) f_{1}(3 x-2)+1 / 2 & \text { for } 2 / 3 \leq x \leq 1\end{cases}
$$

If we continue this process, show that the resulting sequence $\left(f_{n}\right)$ converges uniformly on $[0,1]$.
(c) Let $f=\lim f_{n}$. Prove that f is a continuous, increasing function on $[0,1]$ with $f(0)=0$ and $f(1)=1$ that satisfies $f^{\prime}(x)=0$ for all x in the open set $[0,1] \backslash C$. Recall that the "length" of the Cantor set C is 0 . Somehow, f manages to increase from 0 to 1 while remaining constant on a set of "length $1 . "$

