Math 315 Homework #16 6/6/2017

6.2.1 Let f_n(x) = nx/(1+nx²).
(a) Find the pointwise limit of (f_n) for all x ∈ (0,∞).
(b) Is the convergence uniform on (0,∞)?
(c) Is the convergence uniform on (0,1)?
(d) Is the convergence uniform on (1,∞)? **6.2.3** For each $n \in \mathbb{N}$ and $x \in [0, \infty)$, let

$$g_n(x) = rac{x}{1+x^n}$$
 and $h_n(x) = \begin{cases} 1 & \text{if } x \ge 1/n \\ nx & \text{if } 0 \le x < 1/n. \end{cases}$

Answer the following questions for the sequences (g_n) and (h_n) :

- (a) Find the pointwise limit on $[0, \infty)$.
- (b) Explain how we know that the convergence *cannot* be uniform on $[0, \infty)$.
- (c) Choose a smaller set over which the convergence is uniform and supply an argument to show that this is indeed the case.

6.2.12 (Extra Credit) Review the construction of the Cantor set $C \subseteq [0, 1]$ from Section 3.1. This exercise makes use of results and notation from this discussion.

(a) Define $f_0(x) = x$ for all $x \in [0, 1]$. Now, let

$$f_1(x) = \begin{cases} (3/2)x & \text{for } 0 \le x \le 1/3\\ 1/2 & \text{for } 1/3 < x < 2/3\\ (3/2)x - 1/2 & \text{for } 2/3 \le x \le 1. \end{cases}$$

Sketch f_0 and f_1 over [0,1] and observe that f_1 is continuous, increasing, and is constant on the middle third $(1/3, 2/3) = [0,1] \setminus C_1$.

(b) Construct f_2 by imitating this process of flattening out the middle third of each nonconstant segment of f_1 . Specifically, let

$$f_2(x) = \begin{cases} (1/2)f_1(3x) & \text{for } 0 \le x \le 1/3\\ f_1(x) & \text{for } 1/3 < x < 2/3\\ (1/2)f_1(3x-2) + 1/2 & \text{for } 2/3 \le x \le 1. \end{cases}$$

If we continue this process, show that the resulting sequence (f_n) converges uniformly on [0, 1].

(c) Let $f = \lim f_n$. Prove that f is a continuous, increasing function on [0,1] with f(0) = 0 and f(1) = 1 that satisfies f'(x) = 0 for all x in the open set $[0,1] \setminus C$. Recall that the "length" of the Cantor set C is 0. Somehow, f manages to increase from 0 to 1 while remaining constant on a set of "length 1."