Abbott: 1.3.5, 1.3.8, 1.4.1, 1.4.3
1.3.5 As in Example 1.3.7, let $A \subseteq \mathbb{R}$ be nonempty and bounded above, and let $c \in \mathbb{R}$. This time, define the set $c A$ by $c A=\{c a: a \in A\}$.
(a) If $c \geq 0$, show that $\sup (c A)=c \sup A$.
(b) Postulate a similar type of statement for $\sup (c A)$ for the case $c<0$.
1.3.8 Compute, without proofs, the suprema and infima of the following sets:
(a) $\{m / n: m, n \in \mathbb{N}$ with $m<n\}$.
(b) $\left\{(-1)^{m} / n: m, n \in \mathbb{N}\right\}$.
(c) $\{n /(3 n+1): n \in \mathbb{N}\}$.
(d) $\{m /(m+n): m, n \in \mathbb{N}\}$.
1.4.1 Recall that II stands for the set of irrational numbers.
(a) Show that if $a, b \in \mathbb{Q}$, then $a b$ and $a+b$ are elements of \mathbb{Q} as well.
(b) Show that if $a \in \mathbb{Q}$ and $t \in \mathbb{I}$, then $a+t \in \mathbb{I}$ and at $\in \mathbb{I}$ as long as $a \neq 0$.
(c) Part (a) can be summarized by saying that \mathbb{Q} is closed under addition and multiplication. Is \mathbb{I} closed under addition and multiplication? Given two irrational numbers s and t, what can we say about $s+t$ and $s t$?
1.4.3 Prove that $\bigcap_{n=1}^{\infty}(0,1 / n)=\varnothing$. Notice that this demonstrates that the intervals in the Nested Interval Property must be closed for the conclusion of the theorem to hold.

