Math 315 Homework #2 4/11/2017

Abbott: 1.3.5, 1.3.8, 1.4.1, 1.4.3

1.3.5 As in Example 1.3.7, let $A \subseteq \mathbb{R}$ be nonempty and bounded above, and let $c \in \mathbb{R}$. This time, define the set cA by $cA = \{ca : a \in A\}$.

(a) If $c \ge 0$, show that $\sup(cA) = c \sup A$.

(b) Postulate a similar type of statement for sup(cA) for the case c < 0.

1.3.8 Compute, without proofs, the suprema and infima of the following sets:

- (a) $\{m/n : m, n \in \mathbb{N} \text{ with } m < n\}.$
- (b) $\{(-1)^m/n : m, n \in \mathbb{N}\}.$
- (c) $\{n/(3n+1): n \in \mathbb{N}\}.$
- (d) $\{m/(m+n): m, n \in \mathbb{N}\}.$

1.4.1 Recall that I stands for the set of irrational numbers.

- (a) Show that if $a, b \in \mathbb{Q}$, then ab and a + b are elements of \mathbb{Q} as well.
- (b) Show that if $a \in \mathbb{Q}$ and $t \in \mathbb{I}$, then $a + t \in \mathbb{I}$ and $at \in \mathbb{I}$ as long as $a \neq 0$.
- (c) Part (a) can be summarized by saying that \mathbb{Q} is closed under addition and multiplication. Is \mathbb{I} closed under addition and multiplication? Given two irrational numbers *s* and *t*, what can we say about *s* + *t* and *st*?

1.4.3 Prove that $\bigcap_{n=1}^{\infty}(0, 1/n) = \emptyset$. Notice that this demonstrates that the intervals in the Nested Interval Property must be closed for the conclusion of the theorem to hold.