Abbott: 1.4.5, 1.5.9
1.4.5 Using Exercise 1.4.1, supplly a proof for Corollary 1.4.4 by considering the real numbers $a-\sqrt{2}$ and $b-\sqrt{2}$.
1.5.9 A real number $x \in \mathbb{R}$ is called algebraic if there exist integers $a_{0}, a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{Z}$, not all zero, such that

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}=0
$$

Said another way, a real number is algebraic if it is the root of a polynomial with integer coefficients. Real numbers that are not algebraic are called transcendental numbers. Reread the last paragraph of Section 1.1. The final question posed here is closely related to the question of whether or not transcendental numbers exist.
(a) Show that $\sqrt{2}, \sqrt[3]{2}$, and $\sqrt{3}+\sqrt{2}$ are algebraic.
(b) Fix $n \in \mathbb{N}$, and let A_{n} be the algebraic numbers obtained as roots of polynomials with integer coefficients that have degree n. Using the fact that every polynomial has a finite number of roots, show that A_{n} is countable.
(c) Now, argue that the set of all algebraic numbers is countable. What may we conclude about the set of transcendental numbers?

