Math 315
Homework \#4
4/18/2017
Abbott: 2.2.2, 2.2.3, 2.2.5, 2.2.6
2.2.2 Verify, using the definition of convergence of a sequence, that the following sequences converge to the proposed limit.
(a) $\lim \frac{2 n+1}{5 n+4}=\frac{2}{5}$.
(b) $\lim \frac{2 n^{2}}{n^{3}+3}=0$.
(c) $\lim \frac{\sin \left(n^{2}\right)}{\sqrt[3]{n}}=0$.
2.2.3 Describe what we would have to demonstrate in order to disprove each of the following statements.
(a) At every college in the United States, there is a student who is at least seven feet tall.
(b) For all colleges in the United States, there exists a professor who gives every student a grade of either A or B .
(c) There exists a college in the United States where every student is at least six feet tall.
2.2.5 Let $[[x]]$ be the greatest integer less than or equal to x. For example, $[[\pi]]=3$ and $[[3]]=3$. For each sequence, find $\lim a_{n}$ and verify it with the definition of convergence.
(a) $a_{n}=[[5 / n]]$,
(b) $a_{n}=[[(12+4 n) / 3 n]]$.

Reflecting on these examples, comment on the statement following Definition 2.2.3 that "the smaller the ϵ-neighborhood, the larger N may have to be."
2.2.6 Prove Theorem 2.2.7. To get started, assume $\left(a_{n}\right) \rightarrow a$ and also that $\left(a_{n}\right) \rightarrow b$. Now argue $a=b$.

