Abbott: 2.3.7, 2.4.1, 2.4.2, 2.4.3
2.3.7 Give an example of each of the following, or state that such a request is impossible by referencing the proper theorem(s):
(a) sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$, which both diverge, but whose sum $\left(x_{n}+y_{n}\right)$ converges;
(b) sequences $\left(x_{n}\right)$ and $\left(y_{n}\right)$, where $\left(x_{n}\right)$ converges, $\left(y_{n}\right)$ diverges, and $\left(x_{n}+y_{n}\right)$ converges;
(c) a convergent sequence $\left(b_{n}\right)$ with $b_{n} \neq 0$ for all n such that $\left(1 / b_{n}\right)$ diverges;
(d) an unbounded sequence $\left(a_{n}\right)$ and a convergent sequence $\left(b_{n}\right)$ with $\left(a_{n}-b_{n}\right)$ bounded;
(e) two sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$, where $\left(a_{n} b_{n}\right)$ and $\left(a_{n}\right)$ converge but $\left(b_{n}\right)$ does not.

2.4.1

(a) Prove that the sequence defined by $x_{1}=3$ and

$$
x_{n+1}=\frac{1}{4-x_{n}}
$$

converges.
(b) Now that we know $\lim x_{n}$ exists, explain why $\lim x_{n+1}$ must also exist and equal the same value.
(c) Take the limit of each side of the recursive equation in part (a) of this exercise to explicitly compute $\lim x_{n}$.

2.4.2

(a) Consider the recursively defined sequence $y_{1}=1$,

$$
y_{n+1}=3-y_{n}
$$

and set $y=\lim y_{n}$. Because $\left(y_{n}\right)$ and $\left(y_{n+1}\right)$ have the same limit, taking the limit across the recursive equation gives $y=3-y$. Solving for y, we conclude $\lim y_{n}=$ 3/2.

What is wrong with this argument?
(b) This time set $y_{1}=1$ and $y_{n+1}=3-\frac{1}{y_{n}}$. Can the strategy in (a) be applied to compute the limit of this sequence?

2.4.3

(a) Show that

$$
\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \ldots
$$

converges and find the limit.
(b) Does the sequence

$$
\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2}}}, \ldots
$$

converge? If so, find the limit.

