Abbott: 2.6.4, 2.7.7, 2.7.9
2.6.4 Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be Cauchy sequences. Decide whether each of the following sequences is a Cauchy sequence, justifying each conclusion.
(a) $c_{n}=\left|a_{n}-b_{n}\right|$
(b) $c_{n}=(-1)^{n} a_{n}$
(c) $c_{n}=\left[\left[a_{n}\right]\right]$, where $[[x]]$ refers to the greatest integer less than or equal to x.

2.7.7

(a) Show that if $a_{n}>0$ and $\lim \left(n a_{n}\right)=l$ with $l \neq 0$, then the series $\sum a_{n}$ diverges.
(b) Assume $a_{n}>0$ and $\lim \left(n^{2} a_{n}\right)$ exists. Show that $\sum a_{n}$ converges.
2.7.9 (Ratio Test) Given a series $\sum_{n=1}^{\infty} a_{n}$ with $a_{n} \neq 0$, the Ratio Test states that if $\left(a_{n}\right)$ satisfies

$$
\lim \left|\frac{a_{n+1}}{a_{n}}\right|=r<1
$$

then the series converges absolutely.
(a) Let r^{\prime} satisfy $r<r^{\prime}<1$. Explain why there exists an N such that $n \geq N$ implies $\left|a_{n+1}\right| \leq\left|a_{n}\right| r^{\prime}$.
(b) Why does $\left|a_{N}\right| \sum\left(r^{\prime}\right)^{n}$ converge?
(c) Now, show that $\sum\left|a_{n}\right|$ converges, and conclude that $\sum a_{n}$ converges.

