MATROID THEORY: HOMEWORK 1

MAX KUTLER

This assignment is due on Monday, February 5.

1. The matroid of a hyperplane arrangement

Let V be a finite-dimensional vector space over a fixed field K. A **linear hyperplane** in V is a linear subspace of V of codimension 1. A **hyperplane arrangement** \mathcal{A} in V is a collection

$$\mathcal{A} = \{ H_e \mid e \in E \},\$$

where E is a finite indexing set, and each H_e is either a linear hyperplane in V or the **degenerate hyperplane** $H_e = V$. We allow repeated hyperplanes ($H_e = H_f$ for $e \neq f$). Let $\mathcal{I} \subseteq 2^E$ be the collection of subsets $I \subseteq E$ such that

$$\operatorname{codim}\left(\bigcap_{e\in I}H_e\right) = |I|.$$

- (a) Prove that (E, \mathcal{I}) is a matroid, which we shall denote $M(\mathcal{A})$. (This is the same notation for the matroid of an arrangement of *vectors*. It will generally be clear from the context whether \mathcal{A} is a hyperplane arrangement or a vector arrangement.)
- (b) Identify the bases, rank function, and flats of $M(\mathcal{A})$.
- (c) Identify the loops and spanning sets of $M(\mathcal{A})$.
- (d) Prove that a matroid is representable (as the matroid of a vector arrangement) if and only if it is isomorphic to the matroid of a hyperplane arrangement.

2. Representability of uniform matroids

- (a) Prove that $U_{2,4}$ is representable over a field K if and only if $|K| \ge 3$.
- (b) Fix $n \ge 2$. Find necessary and sufficient conditions on K for $U_{2,n}$ to be K-representable.
- (c) Prove that $U_{2,4}$ is not graphic.
- (d) Find all pairs $(r, n), 0 \le r \le n$, such that $U_{r,n}$ is graphic.

3. Circuit-hyperplane relaxation

Let M be a matroid on E, and suppose $H \subseteq E$ is a hyperplane which is also a circuit.

- (a) Prove that $\mathcal{B}' = \mathcal{B}(M) \cup \{H\}$ is the set of bases of a matroid M' on E.
- (b) Identify the circuits of M'.

MAX KUTLER

4. Loops

Let M be a matroid on E, and let $e \in E$. Prove the equivalence of the following statements.

- (a) $\{e\}$ is a circuit
- (b) e is in no bases.
- (c) e is in no independent sets.
- (d) If $X \subseteq E$ is any subset, then $e \in cl(X)$.
- (e) $e \in cl(\emptyset)$.
- (f) $rk(\{e\}) = 0.$

We say that e is a **loop** of M if it satisfies any of the equivalent conditions (a)–(f).

5. Characterization of matroids by flats

Let E be a finite set and $\mathcal{F} \subseteq 2^E$ a collection of subsets. Prove that \mathcal{F} is the set of flats of a matroid on E if and only if \mathcal{F} satisfies the following conditions:

(F1) $E \in \mathcal{F}$.

(F2) If $F_1, F_2 \in \mathcal{F}$, then $F_1 \cap F_2 \in \mathcal{F}$.

(F3) If $F \in \mathcal{F}$ and $\{F_1, \ldots, F_k\}$ is the set of minimal members of \mathcal{F} properly containing F, then $\{F_1 \smallsetminus F, F_2 \smallsetminus F, \ldots, F_k \smallsetminus F\}$ is a partition of $E \smallsetminus F$.

 $\mathbf{2}$