
MATROID THEORY: HOMEWORK 2

MAX KUTLER

This assignment is due on Monday, February 26.

1. Paving matroids
Note that every circuit in a matroid M has size at most rk(M) + 1 (Why?). We say
M is paving if it has no circuits of size less than rk(M).
(a) Show that a matroid M is uniform if and only if it has no circuits of size less than

rk(M) + 1. Conclude that uniform matroids are paving.
(b) Let D be a collection of subsets of a finite set E with ∅ /∈ D. Prove that D is

the set of circuits of a paving matroid on E if and only if there exists a subset
D′ ⊆ D such that
(P1) There is an integer k ≤ |E| such that every D ∈ D′ has |D| = k;
(P2) If D1 6= D2 are distinct members of D′ with |D1 ∩D2| = k − 1, then each

k-element subset of D1 ∪D2 is in D′;
(P3) D rD′ = {X ⊆ E | |X| = k + 1 and no subset of X is in D′}.

(c) Let d be a positive integer. A collection T of at least two subsets of E is called
a d-partition if

(i) Every T ∈ T has |T | ≥ d; and
(ii) If X ⊆ E has size d, then there is a unique T ∈ T such that X ⊆ T .

Prove that T ⊆ 2E is a d-partition if and only if T is the set of hyperplanes of a
paving matroid on E of rank d + 1.

2. The poset dual of a lattice
Let P be a poset. Let P ′ be the poset defined by x ≤ y in P ′ if and only if x ≥ y in P .
In other words, the Hasse diagram for P ′ is obtained by flipping the Hasse diagram
for P upside-down.
(a) Prove that if P is a lattice, then so is P ′.
(b) Show, by examples, that if P is a geometric lattice, then P ′ may or may not be

geometric.

3. Circuit-cocircuit orthogonality
Let M be a matroid on E. Prove that X ⊆ E is a circuit of M if and only if X is a
minimal non-empty set with the property that |X ∩ C∗| 6= 1 for every cocircuit C∗ of
M .
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4. Fundamental cocircuits
Let M be a matroid on E. If B is a basis of M and e ∈ B, then we have the
fundamental circuit CM∗(e, E r B) in M∗. Considered as a cocircuit of M , this is
called the fundamental cocircuit of e with respect to B and is denoted C∗(e, B).
(a) Show that C∗(e, B) is the unique cocircuit of M that is disjoint from B r e.
(b) For f ∈ E rB, show that f ∈ C∗(e, B) if and only if e ∈ C(f,B).
(c) Let C∗1 , . . . , C∗r be distinct cocircuits of a rank-r matroid M . Prove that the

following statements are equivalent.
(i) For each j = 1, . . . , r, the cocircuit C∗j is not contained in

⋃
i 6=j C

∗
i .

(ii) There is a basis B of M such that C∗1 , . . . , C∗r is a complete list of funda-
mental circuits with respect to B.

5. The Vámos matroid
The Vámos matroid V8 is the matroid on 8 elements with the following geometric
representation.
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Note that, as is typical in such representations, we have only drawn the “interesting”
coplanarities: the 5 sets of four coplanar points. Importantly, the points {5, 6, 7, 8}
are not coplanar.
(a) Use exercise 1(c) to prove that V8 is a rank 4 paving matroid.
(b) Prove that V8 is self-dual but not identically self-dual.
(c) Prove that V8 is not representable over any field.

To get you started: The goal is to show that in any such configuration of points,
{5, 6, 7, 8} must be coplanar. Do this by showing that the lines 56 and 78 must
intersect. As a first step, show that 56 must intersect the plane containing the
points {1, 2, 3, 4}.


