MATROID THEORY: HOMEWORK 2

MAX KUTLER

This assignment is due on Monday, February 26.

1. Paving matroids

Note that every circuit in a matroid M has size at most rk(M) + 1 (Why?). We say M is **paving** if it has no circuits of size less than rk(M).

- (a) Show that a matroid M is uniform if and only if it has no circuits of size less than rk(M) + 1. Conclude that uniform matroids are paving.
- (b) Let \mathcal{D} be a collection of subsets of a finite set E with $\emptyset \notin \mathcal{D}$. Prove that \mathcal{D} is the set of circuits of a paving matroid on E if and only if there exists a subset $\mathcal{D}' \subseteq \mathcal{D}$ such that
 - (P1) There is an integer $k \leq |E|$ such that every $D \in \mathcal{D}'$ has |D| = k;
 - (P2) If $D_1 \neq D_2$ are distinct members of \mathcal{D}' with $|D_1 \cap D_2| = k 1$, then each *k*-element subset of $D_1 \cup D_2$ is in \mathcal{D}' ;
 - (P3) $\mathcal{D} \setminus \mathcal{D}' = \{X \subseteq E \mid |X| = k + 1 \text{ and no subset of } X \text{ is in } \mathcal{D}'\}.$
- (c) Let d be a positive integer. A collection \mathcal{T} of at least two subsets of E is called a d-partition if
 - (i) Every $T \in \mathcal{T}$ has $|T| \ge d$; and
 - (ii) If $X \subseteq E$ has size d, then there is a unique $T \in \mathcal{T}$ such that $X \subseteq T$.

Prove that $\mathcal{T} \subseteq 2^E$ is a *d*-partition if and only if \mathcal{T} is the set of hyperplanes of a paving matroid on *E* of rank d + 1.

2. The poset dual of a lattice

Let \mathcal{P} be a poset. Let \mathcal{P}' be the poset defined by $x \leq y$ in \mathcal{P}' if and only if $x \geq y$ in \mathcal{P} . In other words, the Hasse diagram for \mathcal{P}' is obtained by flipping the Hasse diagram for \mathcal{P} upside-down.

- (a) Prove that if \mathcal{P} is a lattice, then so is \mathcal{P}' .
- (b) Show, by examples, that if \mathcal{P} is a geometric lattice, then \mathcal{P}' may or may not be geometric.

3. Circuit-cocircuit orthogonality

Let M be a matroid on E. Prove that $X \subseteq E$ is a circuit of M if and only if X is a minimal non-empty set with the property that $|X \cap C^*| \neq 1$ for every cocircuit C^* of M.

MAX KUTLER

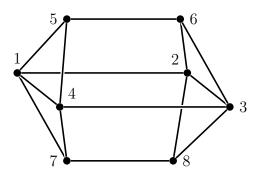
4. Fundamental cocircuits

Let M be a matroid on E. If B is a basis of M and $e \in B$, then we have the fundamental circuit $C_{M^*}(e, E \setminus B)$ in M^* . Considered as a cocircuit of M, this is called the **fundamental cocircuit** of e with respect to B and is denoted $C^*(e, B)$.

- (a) Show that $C^*(e, B)$ is the unique cocircuit of M that is disjoint from $B \setminus e$.
- (b) For $f \in E \setminus B$, show that $f \in C^*(e, B)$ if and only if $e \in C(f, B)$.
- (c) Let C_1^*, \ldots, C_r^* be distinct cocircuits of a rank-*r* matroid *M*. Prove that the following statements are equivalent.
 - (i) For each j = 1, ..., r, the cocircuit C_j^* is not contained in $\bigcup_{i \neq j} C_i^*$.
 - (ii) There is a basis B of M such that C_1^*, \ldots, C_r^* is a complete list of fundamental circuits with respect to B.

5. The Vámos matroid

The Vámos matroid V_8 is the matroid on 8 elements with the following geometric representation.



Note that, as is typical in such representations, we have only drawn the "interesting" coplanarities: the 5 sets of four coplanar points. Importantly, the points $\{5, 6, 7, 8\}$ are *not* coplanar.

- (a) Use exercise 1(c) to prove that V_8 is a rank 4 paving matroid.
- (b) Prove that V_8 is self-dual but not identically self-dual.
- (c) Prove that V_8 is not representable over any field. To get you started: The goal is to show that in any such configuration of points, $\{5, 6, 7, 8\}$ must be coplanar. Do this by showing that the lines $\overline{56}$ and $\overline{78}$ must intersect. As a first step, show that $\overline{56}$ must intersect the plane containing the points $\{1, 2, 3, 4\}$.

2