MATROID THEORY: HOMEWORK 2

MAX KUTLER

This assignment is due on Monday, February 26.

1. Paving matroids

Note that every circuit in a matroid M has size at most $\operatorname{rk}(M)+1$ (Why?). We say M is paving if it has no circuits of size less than $\operatorname{rk}(M)$.
(a) Show that a matroid M is uniform if and only if it has no circuits of size less than $\operatorname{rk}(M)+1$. Conclude that uniform matroids are paving.
(b) Let \mathcal{D} be a collection of subsets of a finite set E with $\emptyset \notin \mathcal{D}$. Prove that \mathcal{D} is the set of circuits of a paving matroid on E if and only if there exists a subset $\mathcal{D}^{\prime} \subseteq \mathcal{D}$ such that
(P1) There is an integer $k \leq|E|$ such that every $D \in \mathcal{D}^{\prime}$ has $|D|=k$;
(P2) If $D_{1} \neq D_{2}$ are distinct members of \mathcal{D}^{\prime} with $\left|D_{1} \cap D_{2}\right|=k-1$, then each k-element subset of $D_{1} \cup D_{2}$ is in \mathcal{D}^{\prime};
(P3) $\mathcal{D} \backslash \mathcal{D}^{\prime}=\left\{X \subseteq E| | X \mid=k+1\right.$ and no subset of X is in $\left.\mathcal{D}^{\prime}\right\}$.
(c) Let d be a positive integer. A collection \mathcal{T} of at least two subsets of E is called a d-partition if
(i) Every $T \in \mathcal{T}$ has $|T| \geq d$; and
(ii) If $X \subseteq E$ has size d, then there is a unique $T \in \mathcal{T}$ such that $X \subseteq T$.

Prove that $\mathcal{T} \subseteq 2^{E}$ is a d-partition if and only if \mathcal{T} is the set of hyperplanes of a paving matroid on E of rank $d+1$.

2. The poset dual of a lattice

Let \mathcal{P} be a poset. Let \mathcal{P}^{\prime} be the poset defined by $x \leq y$ in \mathcal{P}^{\prime} if and only if $x \geq y$ in \mathcal{P}. In other words, the Hasse diagram for \mathcal{P}^{\prime} is obtained by flipping the Hasse diagram for \mathcal{P} upside-down.
(a) Prove that if \mathcal{P} is a lattice, then so is \mathcal{P}^{\prime}.
(b) Show, by examples, that if \mathcal{P} is a geometric lattice, then \mathcal{P}^{\prime} may or may not be geometric.

3. Circuit-cocircuit orthogonality

Let M be a matroid on E. Prove that $X \subseteq E$ is a circuit of M if and only if X is a minimal non-empty set with the property that $\left|X \cap C^{*}\right| \neq 1$ for every cocircuit C^{*} of M.

4. Fundamental cocircuits

Let M be a matroid on E. If B is a basis of M and $e \in B$, then we have the fundamental circuit $C_{M^{*}}(e, E \backslash B)$ in M^{*}. Considered as a cocircuit of M, this is called the fundamental cocircuit of e with respect to B and is denoted $C^{*}(e, B)$.
(a) Show that $C^{*}(e, B)$ is the unique cocircuit of M that is disjoint from $B \backslash e$.
(b) For $f \in E \backslash B$, show that $f \in C^{*}(e, B)$ if and only if $e \in C(f, B)$.
(c) Let $C_{1}^{*}, \ldots, C_{r}^{*}$ be distinct cocircuits of a rank- r matroid M. Prove that the following statements are equivalent.
(i) For each $j=1, \ldots, r$, the cocircuit C_{j}^{*} is not contained in $\bigcup_{i \neq j} C_{i}^{*}$.
(ii) There is a basis B of M such that $C_{1}^{*}, \ldots, C_{r}^{*}$ is a complete list of fundamental circuits with respect to B.

5. The Vámos matroid

The Vámos matroid V_{8} is the matroid on 8 elements with the following geometric representation.

Note that, as is typical in such representations, we have only drawn the "interesting" coplanarities: the 5 sets of four coplanar points. Importantly, the points $\{5,6,7,8\}$ are not coplanar.
(a) Use exercise 1 (c) to prove that V_{8} is a rank 4 paving matroid.
(b) Prove that V_{8} is self-dual but not identically self-dual.
(c) Prove that V_{8} is not representable over any field.

To get you started: The goal is to show that in any such configuration of points, $\{5,6,7,8\}$ must be coplanar. Do this by showing that the lines $\overline{56}$ and $\overline{78}$ must intersect. As a first step, show that $\overline{56}$ must intersect the plane containing the points $\{1,2,3,4\}$.

