MATROID THEORY: HOMEWORK 3

MAX KUTLER

This assignment is due on Wednesday, March 28.

1. Separators

Let M be a matroid on E. Recall that a **separator** of M is a subset $T \subseteq E$ satisfying one of the following equivalent properties.

- (a) $M \setminus T = M/T$
- (b) $\operatorname{rk}(M \setminus T) = \operatorname{rk}(M/T)$
- (c) $\operatorname{rk}(T) + \operatorname{rk}(E \setminus T) = \operatorname{rk}(M)$
- (d) $\operatorname{rk}(T) + \operatorname{rk}^*(T) = |T|$
- (e) If $C \in \mathcal{C}(M)$ is a circuit, then $C \subseteq T$ or $C \subseteq E \setminus T$.
- (f) T is a union of connected components of M
- (g) $M = M|_T \oplus M|_{E \setminus T}$

Prove the equivalence of (a)–(g).

2. Graphic matroids are regular

Let G be a graph.

- (a) Produce a matrix A_G such that $M(G) \cong M(A_G)$, where $M(A_G)$ is the matroid given by the arrangement of column vectors in A_G . Conclude that M(G) is representable over every field.
- (b) Prove A_G is totally unimodular when it is viewed as a matrix over \mathbb{R} .

3. Regular matroids are binary

Let A be a totally unimodular matrix. Since every entry of A is in $\{-1,0,1\}$, we may reduce each entry modulo 2 to obtain a matrix $A^{\#}$ over \mathbb{F}_2 . Prove $M(A) \cong M(A^{\#})$.

4. Binary matroids

Let M be a matroid. Prove that the following statements are equivalent without using the excluded-minor characterization of binary matroids.

- (a) M is binary.
- (b) For every circuit $C \in \mathcal{C}(M)$ and cocircuit $C^* \in \mathcal{C}^*(M)$, $|C \cap C^*|$ is even.
- (c) For every circuit $C \in \mathcal{C}(M)$ and cocircuit $C^* \in \mathcal{C}^*(M)$, $|C \cap C^*| \neq 3$.
- (d) For every basis $B \in \mathcal{B}(M)$ and circuit $C \in \mathcal{C}(M)$, $C = \Delta_{e \in C \setminus B} C(e, B)$, where Δ denotes symmetric difference of sets.

MAX KUTLER

2

- 5. The missing step in our excluded-minor characterization of binary matroids Let M_1 and M_2 be matroids on the same ground set E. Suppose that $B \subseteq E$ is a basis for both M_1 and M_2 , and furthermore that the fundamental circuits $C_{M_1}(e, B)$ and $C_{M_2}(e, B)$ agree for every $e \in E \setminus B$.
 - (a) Show that M_1 and M_2 are not necessarily equal.
 - (b) Show that if M_1 and M_2 are both binary, then $M_1 = M_2$.