MATROID THEORY: HOMEWORK 3

MAX KUTLER

This assignment is due on Wednesday, March 28.

1. Separators

Let M be a matroid on E. Recall that a separator of M is a subset $T \subseteq E$ satisfying one of the following equivalent properties.
(a) $M \backslash T=M / T$
(b) $\operatorname{rk}(M \backslash T)=\operatorname{rk}(M / T)$
(c) $\operatorname{rk}(T)+\operatorname{rk}(E \backslash T)=\operatorname{rk}(M)$
(d) $\mathrm{rk}(T)+\mathrm{rk}^{*}(T)=|T|$
(e) If $C \in \mathcal{C}(M)$ is a circuit, then $C \subseteq T$ or $C \subseteq E \backslash T$.
(f) T is a union of connected components of M
(g) $M=\left.\left.M\right|_{T} \oplus M\right|_{E \backslash T}$

Prove the equivalence of (a)-(g).

2. Graphic matroids are regular

Let G be a graph.
(a) Produce a matrix A_{G} such that $M(G) \cong M\left(A_{G}\right)$, where $M\left(A_{G}\right)$ is the matroid given by the arrangement of column vectors in A_{G}. Conclude that $M(G)$ is representable over every field.
(b) Prove A_{G} is totally unimodular when it is viewed as a matrix over \mathbb{R}.

3. Regular matroids are binary

Let A be a totally unimodular matrix. Since every entry of A is in $\{-1,0,1\}$, we may reduce each entry modulo 2 to obtain a matrix $A^{\#}$ over \mathbb{F}_{2}. Prove $M(A) \cong M\left(A^{\#}\right)$.

4. Binary matroids

Let M be a matroid. Prove that the following statements are equivalent without using the excluded-minor characterization of binary matroids.
(a) M is binary.
(b) For every circuit $C \in \mathcal{C}(M)$ and cocircuit $C^{*} \in \mathcal{C}^{*}(M),\left|C \cap C^{*}\right|$ is even.
(c) For every circuit $C \in \mathcal{C}(M)$ and cocircuit $C^{*} \in \mathcal{C}^{*}(M),\left|C \cap C^{*}\right| \neq 3$.
(d) For every basis $B \in \mathcal{B}(M)$ and circuit $C \in \mathcal{C}(M), C=\Delta_{e \in C \backslash B} C(e, B)$, where Δ denotes symmetric difference of sets.
5. The missing step in our excluded-minor characterization of binary matroids Let M_{1} and M_{2} be matroids on the same ground set E. Suppose that $B \subseteq E$ is a basis for both M_{1} and M_{2}, and furthermore that the fundamental circuits $C_{M_{1}}(e, B)$ and $C_{M_{2}}(e, B)$ agree for every $e \in E \backslash B$.
(a) Show that M_{1} and M_{2} are not necessarily equal.
(b) Show that if M_{1} and M_{2} are both binary, then $M_{1}=M_{2}$.

