MATROID THEORY: HOMEWORK 4

MAX KUTLER

This assignment is due on Wednesday, April 18.

1. Bases of maximal weight

Let M be a matroid on [n], and let $w = (w_1, w_2, \ldots, w_n) \in \mathbb{R}^n$ be a weight vector. The *w*-weight of a basis $B \in \mathcal{B}(M)$ is the sum $\sum_{i \in B} w_i$. Let $\mathcal{B}_w \subseteq \mathcal{B}(M)$ be the collection of all bases of M of maximal *w*-weight.

- (a) Prove that the greedy algorithm always outputs a member of \mathcal{B}_w .
- (b) Prove that \mathcal{B}_w is the collection of bases of a matroid M_w on [n].

2. The Bergman fan of a matroid

Note that a weight vector $w \in \mathbb{R}^n$ uniquely defines a flag of subsets of [n]

$$\mathscr{F}(w) = \left(\emptyset = F_0 \subsetneq F_1 \subsetneq F_2 \subsetneq \cdots \subsetneq F_k \subsetneq F_{k+1} = [n] \right)$$

satisfying the two conditions

- w is constant on each difference $F_{i+1} \smallsetminus F_i$
- w is strictly decreasing: $w|_{F_i \smallsetminus F_{i-1}} > w|_{F_{i+1} \smallsetminus F_i}$.

For example, if n = 6 and w = (1, 7, 1, 1, 2, 7), then the flag $\mathscr{F}(w)$ is

$$\emptyset \subsetneq \{2,6\} \subsetneq \{2,5,6\} \subsetneq [6].$$

Prove that the following are equivalent for a loopless matroid M on [n] and a weight vector $w \in \mathbb{R}^n$

- (a) For every circuit $C \in \mathcal{C}(M)$, the minimum value in the set $\{w_i \mid i \in C\}$ is achieved at least twice.
- (b) The matroid M_w is loopless.
- (c) Each set F_i in the flag $\mathscr{F}(w)$ is a flat of M.

3. The fine subdivision is finer than the coarse subdivision

- Let M be a (loopless) matroid on [n] and $w \in \mathbb{R}^n$.
- (a) Prove that the flag $\mathscr{F}(w)$ completely determines the matroid M_w . Thus, if $\mathscr{F}(w) = \mathscr{F}(w')$, then $M_w = M_{w'}$.
- (b) Provide an example of a matroid M and weight vectors w and w' such that $M_w = M_{w'}$, but $\mathscr{F}(w) \neq \mathscr{F}(w')$.

MAX KUTLER

4. The independence complex of $\widetilde{B}(M)$

- The independence complex of B(M)
 Let M be a loopless matroid on [n], and S ⊆ [n].
 (a) Suppose S = {s₁,..., s_k} is independent in M. Produce a flag F of flats of M such that the projection of the cone C_F onto ℝ^S has full dimension |S| = k.
 (b) Conversely, suppose S is dependent. Show that, for any flag F of flats of M, the projection of C_F onto ℝ^S has dimension strictly less than |S|.