MATROID THEORY: HOMEWORK 5

MAX KUTLER

This assignment is due on Wednesday, May 2.

1. The coefficients of the Tutte polynomial

Let M be a matroid on E. Choose, arbitrarily, a total order \prec on E (e.g. enumerate $E=\left\{e_{1}, \ldots, e_{n}\right\}$ and set $e_{i} \prec e_{j}$ if and only if $\left.i<j\right)$. With respect to a given basis B of M we say that $e \in E$ is

- internally active if $e \in B$ and e is the smallest element in $C^{*}(e, B)$;
- externally active if $e \notin B$ and e is the smallest element in $C(e, B)$.

Then we define the internal activity of B to be the number of $e \in B$ which are internally active, and similarly the external activity of B to be the number of $e \notin B$ which are externally active.

Prove that

$$
T_{M}(x, y)=\sum_{i, j} t_{i, j} x^{i} y^{j}
$$

where $t_{i, j}$ is the number of bases of M which have internal activity i and external activity j. Conclude that the numbers $t_{i, j}$ are independent of the total order \prec on E.

2. The coefficients of T_{M} (continued)

Let M be a matroid on E Let $t_{i, j}$ be the coefficient of $x^{i} y^{j}$ in T_{M}, as above. Prove the following.
(a) $t_{0,0}=0$ if and only if $M=U_{0,0}$.
(b) $t_{1,0} \neq 0$ if and only if M is loopless and connected. The number $t_{1,0}$ is called the beta invariant of M, denoted $\beta(M)$.
(c) If $|E|>1$, then $t_{1,0}=t_{0,1}$. Conclude that $\beta(M)=\beta\left(M^{*}\right)$ for all matroids on at least two elements.
(d) Suppose M has exactly ℓ loops and k coloops. Then $t_{i, j}=0$ if $i \geq \operatorname{rk}(M)$ or $j \geq \operatorname{null}(M)$, with the exception that $t_{\operatorname{rk}(M), \ell}=1=t_{k, \operatorname{null}(M)}$.
3. The convolution formula for T_{M}

Let M be a matroid on E. Show that

$$
T_{M}(x, y)=\sum_{S \subseteq E} T_{M / S}(x, 0) T_{M \mid S}(0, y)
$$

where M / S and $\left.M\right|_{S}=M \backslash(E \backslash S)$ denote, respectively, the contraction of and restriction to S.
4. Acylic orientations Let M be a graphic matroid. For simplicity, let G be a connected graph with $M \cong M(G)$.

An orientation of G is acyclic if the resulting directed graph has no directed circuits. On the other hand, an orientation of G is totally cyclic if every edge is contained in some directed circuit.

In an orientation of G, a vertex v is a source if that every edge incident to v is outgoing, and a sink if every edge incident to v is incoming.
(a) Prove that the number of acyclic orientations of G is a Tutte-Grothendieck invariant, and that it is equal to $T_{M}(2,0)$.
(b) Prove that the number of totally cyclic orientations of G is $T_{M}(0,2)$.
(c) Prove that every acyclic orientation has at least one source and at least one sink.
(d) Let v be any vertex in G. Prove that the number of acyclic orientations of G with v as the unique source is a Tutte-Grothendieck invariant, and express it as an evaluation of the Tutte polynomial. Conclude that this number is independent of the choice of v.
(e) Let $e \in E(G)$ be an edge with endpoints v and u. Prove that the number of acyclic orientations of G with unique source v and unique $\operatorname{sink} u$ is the beta invariant $\beta(M(G))$.
(f) BONUS PROBLEM: Formulate and prove statements analogous to (c)-(e) for totally cyclic orientations. In particular, find an interpretation of the beta invariant in terms of totally cyclic orientations.

