Homework 10
Math 3345 - Spring 2024 - Kutler

Exercises

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

1. [Falkner Section 5 Exercise 3(a)(b)]

(a) Prove by induction that for each $n \in \mathbb{N}$,

$$
1^{3}+2^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

(b) Explain why it follows from part (a) and Section 5 Exercise 1 that for each $n \in \mathbb{N}$,

$$
1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}
$$

Note: Section 5 Exercise 1 was our first induction example in class (see the notes from Lecture 9).
2. [Falkner Section 4 Exercise 14] Let $a, b, c \in \mathbb{Z}$. Prove the following statements.
(a) a divides a.
(b) If a divides b and b divides a, then $b=a$ or $b=-a$.
(c) If a divides b and b divides c, then a divides c.
3. [Falkner Section 5 Exercise 5] Prove by induction that for each $n \in \mathbb{N}, 5$ divides $7^{n}-2^{n}$.

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

1. [Falkner Section 5 Exercise 3(c)] Follow the outline given in the book to find a "geometric" proof for the forumula $1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}$.
2. [Falkner Section 5 Exercise 6] Prove that for each $x \in \mathbb{Z}, 6$ divides $x^{3}-x$.
[Hint: First use induction to handle the case where $x \in \mathbb{N}$.]
