Homework 11 Math 3345 – Spring 2024 – Kutler

Exercises

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

- 1. [Falkner Section 4 Exercise 13] Let $a, b, c \in \mathbb{Z}$. Prove the following statements.
 - (a) If a|b and a|c, then a|(b+c) and a|(b-c).
 - (b) If a|b or a|c, then a|bc.
 - (c) If a|b, then a|(-b).
 - (d) If a|b, then (-a)|b.

2. [The sieve of Eratosthenes]

- (a) Write all of the integers from 1 to 100 (perhaps as a 10×10 array), and do the following.
 - i. Cross out the number 1.
 - ii. Circle the number 2, then cross out all other numbers divisible by 2.
 - iii. Circle the number 3, then cross out all other numbers divisible by 3.
 - iv. Repeat this procedure: Circle the smallest number d which is not crossed out, then cross out all other numbers divisible by d. Stop once every integer from 1 to 100 is either circled or crossed out.
- (b) Explain why the circled numbers are all of the primes less than 100.

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

- [Falkner Section 4 Exercise 7] Explain what is wrong with the following "proof" that -3 = 5: Suppose that -3 = 5. Then -3 1 = 5 1. Hence, -4 = 4. But then (-4)² = 4². In other words, 16 = 16. This is true. Hence, our assumption that -3 = 5 is correct. ■
- 2. Explain why 0 is the only integer with infinitely many divisors.