Homework 13

Math 3345 - Spring 2024 - Kutler

Exercises

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

1. (a) Let $x \in \mathbb{Z}$ and let p be a prime number. Prove that

$$
\operatorname{gcd}(p, x)= \begin{cases}p & \text { if } p \mid x \\ 1 & \text { if } p \nmid x\end{cases}
$$

(b) Let p and q be distinct prime numbers (i.e., $p \neq q$). Use part (a) to show that $\operatorname{gcd}(p, q)=1$.
2. Use the Euclidean algorithm to compute the following.
(a) $\operatorname{gcd}(36,22)$
(b) $\operatorname{gcd}(96,112)$
(c) $\operatorname{gcd}(162,31)$
(d) $\operatorname{gcd}(-15,45)$
3. (a) Use the Euclidean algorithm to compute $\operatorname{gcd}(350,182)$.
(b) Find integers x_{1} and y_{1} such that $350 x_{1}+182 y_{1}=14$.
(c) Find integers x_{2} and y_{2} such that $350 x_{2}+182 y_{2}=42$. [HINT: $42=3 \cdot 14$.]
(d) Prove that there do not exist integers x and y such that $350 x+182 y=16$.

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

1. Let $a \in \mathbb{Z}$. Prove that
(a) $\operatorname{gcd}(a, 1)=1$.
(b) $\operatorname{gcd}(a, 0)=|a|$.
2. Let $a, b \in \mathbb{Z}$ be integers which are not both zero. Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|)$.
3. Let $a, b \in \mathbb{Z}$ with $b \neq 0$. Prove that the fraction $\frac{a}{b}$ is in lowest terms if and only if $\operatorname{gcd}(a, b)=1$.
