HOMEWORK 2 Math 3345 – Spring 2024 – Kutler

Exercises

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

1. [Falkner Section 2 Exercise 2] Let P, Q and R be logical sentences. Prove the first Distributive Law

$$P \wedge (Q \vee R)$$
 is logically equivalent to $(P \wedge Q) \vee (P \wedge R)$

in two ways:

- (a) By means of a truth table;
- (b) By means of an explanation in words.
- 2. [Falkner Section 2 Exercise 6] Let P and Q be logical sentences. Use a truth table to prove that $\neg(P \Rightarrow Q)$ is logically equivalent to $P \land \neg Q$.
- 3. Write **both** the contrapositive and the converse of each conditional sentence below. Do not worry about the truth value of any of these statements.
 - (a) If it is raining, then the ground is wet.
 - (b) If a = 4, then $a^2 = 16$.
 - (c) If $a \neq b$, then $a^4 \neq b^4$.

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

1. Use De Morgan's laws to find a sentence which is logically equivalent to

$$\neg \Big[\big((x > 1) \land (x < 3) \big) \lor \big((x \ge 4) \land (x < 7) \big) \Big]$$

and which does not use the logical connective "¬".

2. Is $(P \Rightarrow Q) \Rightarrow R$ logically equivalent to $P \Rightarrow (Q \Rightarrow R)$? Use a truth table to justify your answer.