Homework 21 Math 3345 – Spring 2024 – Kutler

Exercises

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

1. [Falkner Section 11 Exercise 15(a) – modified] Recall that for a set X, the power set $\mathscr{P}(X)$ is the set of all subsets of X.

Let S and T be sets.

- (a) Prove that if $A \subseteq S$ and $B \subseteq T$, then $A \cup B \subseteq S \cup T$.
- (b) Prove that every subset of $S \cup T$ is of the form $A \cup B$, where $A \subseteq S$ and $B \subseteq T$. That is, if $Y \subseteq S \cup T$, then there exist subsets $A \subseteq S$ and $B \subseteq T$ such that $Y = A \cup B$.

We may understand the result of part (a) as saying that the function

$$f: \mathscr{P}(S) \times \mathscr{P}(T) \to \mathscr{P}(S \cup T)$$
$$(A, B) \mapsto A \cup B$$

is well-defined. That is, if $A \subseteq S$ and $B \subseteq T$, then $f(A, B) = A \cup B$ is a well-defined subset of $S \cup T$.

The result of part (b) then shows that the range of f is all of $\mathscr{P}(S \cup T)$, i.e., f is surjective. That is, if $Y \in \mathscr{P}(S \cup T)$, then there exist $A \in \mathscr{P}(S)$ and $B \in \mathscr{P}(T)$ such that f(A, B) = Y.

(c) Illustrate this line of thinking in the case where $S = \{1, 2\}$ and $T = \{2, 3\}$. The eight subsets of $S \cup T = \{1, 2, 3\}$ are

 $\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}.$

For each set Y in this list, find $A \subseteq \{1, 2\}$ and $B \subseteq \{2, 3\}$ such that $A \cup B = Y$.

(d) Continuing with the example from part (c), for which of the sets Y is there a **unique** choice of $A \subseteq \{1, 2\}$ and $B \subseteq \{2, 3\}$ such that $A \cup B = Y$?

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

1. [Falkner Section 10 Exercise 34 – modified]

- (a) Let A be a set. Prove that $A \times \emptyset = \emptyset$.
- (b) Let A and B be sets. Deduce that $A \times \emptyset = B \times \emptyset$.
- (c) Let A, B, and C be sets, and suppose that $C \neq \emptyset$. Prove that if $A \times C = B \times C$, then A = B.

$$S \cup \left(\bigcap_{A \in \mathscr{A}} A\right) = \bigcap_{A \in \mathscr{A}} (S \cup A).$$

3. [Falkner Section 10 Exercise 27] Let A be a set and let \mathscr{B} be a nonempty set of sets. Show that:

(a)
$$A \cup \left(\bigcup_{B \in \mathscr{B}} B\right) = \bigcup_{B \in \mathscr{A}} (A \cup B)$$

(b) $A \cap \left(\bigcap_{B \in \mathscr{B}} B\right) = \bigcap_{B \in \mathscr{A}} (A \cap B)$