Homework 3

Math 3345 - Spring 2024 - Kutler

Exercises

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

1. [Falkner Section 2 Exercise 7] Let x and y be real numbers.
(a) Let A be the sentence "If $x+y>0$, then $x>0$ or $y>0$." Use Theorem 2.10 and one of De Morgan's laws to show that $\neg A$ is logically equivalent to " $x+y>0$ and $x \leq 0$ and $y \leq 0$." Be careful not to skip any steps.
(b) Is the sentence A in part (a) true, or is $\neg A$ true? Explain why.
(c) Let B be the sentence "If $x+y>2$, then $x>2$ or $y>2$." Is B true, or is $\neg B$ true, or is it impossible to say without further information about the specific values of x and y ? (Hint: Can you find specific values for x and y for which B is true? If so, give an example of such values. Can you find other specific values for x and y for which $\neg B$ is true? If so, give an example of such values.)
2. [Falkner Section 2 Exercise 9] Let P xor Q mean " P exclusive or Q." In other words, P xor Q should be true just when exactly one of P or Q is true.
(a) Write out the truth table for P xor Q.
(b) Show by a truth table that P xor Q is logically equivalent to $(P \wedge \neg Q) \vee(Q \wedge \neg P)$.
(c) Show by truth tables that the following four sentences are logically equivalent:

$$
P \text { xor } Q, \quad \neg(P \Leftrightarrow Q), \quad(\neg P) \Leftrightarrow Q, \quad P \Leftrightarrow(\neg Q) \text {. }
$$

(d) Show by a truth table that $(\neg P) \Leftrightarrow(\neg Q)$ is logically equivalent to $P \Leftrightarrow Q$.

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

1. [Falkner Section 2 Exercise 4] Suppose that $P \vee Q$ is true and $\neg Q$ is true. Explain why it follows that P must be true.
