HOMEWORK 7 Math 3345 – Spring 2024 – Kutler

Exercises

Please complete the following problems on your own paper. Solutions should be written clearly, legibly, and with appropriate style.

1. Let A(x, y) be the conditional sentence

If
$$x = 3$$
 and $y = 5$, then $xy = 15$.

Although most people probably read this sentence as a straightforwardly true statement, it is technically a function of the variables x and y (it's just that "x = 3 and y = 5" is false for almost all values of x and y). To produce an unambiguously true or false sentence, we should bound these variables with quantifiers.

- (a) Is $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R}) A(x, y)$ true or false? Explain your answer.
- (b) Use one of the generalized De Morgan's laws to write the negation of the sentence $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R}) A(x, y).$
- (c) Let B(x, y) be the converse of A(x, y). Is $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R}) B(x, y)$ true or false? Explain your answer.
- 2. [Falkner Section 3 Exercise 14] For each of the following sentences, write out what it means in words, state whether it is true or false, and prove your answer.
 - (a) $(\exists ! x \in \mathbb{R})(2x + 7 = 3).$
 - (b) $(\exists ! x \in \mathbb{R})(x^2 4x + 3 < 0).$
 - (c) $(\exists ! x \in \mathbb{Z})(x^2 4x + 3 < 0).$
 - (d) $(\exists ! x \in \mathbb{R})(x^2 4x + 4 = 0).$
 - (e) $(\exists ! x \in \mathbb{R})(x^2 4x + 5 = 0).$
 - (f) $(\forall x \in \mathbb{R})(\exists ! y \in \mathbb{R})(x + y = 0).$
 - (g) $(\forall x \in \mathbb{R})(\exists ! y \in \mathbb{R})(xy = 1).$
 - (h) $(\forall x \in \mathbb{R})[\text{if } x \neq 0, \text{ then } (\exists y \in \mathbb{R})(xy = 1)].$
 - (i) $(\forall x \in \mathbb{R})(\exists ! y \in \mathbb{R})(xy = 0).$
 - (j) $(\forall x \in \mathbb{R})[\text{if } x \neq 0, \text{ then } (\exists y \in \mathbb{R})(xy = 0)].$

Practice Problems

It is strongly recommended that you complete the following problems. There is no need to write up polished, final versions of your solutions (although you may find this a useful exercise). Please do not submit any work for these problems.

- 1. Read the (incorrect) proof given in [Falkner Section 5 Exercise 8], which purports to prove by induction that all horses have the same color.
 - (a) Modify this proof to obtain (incorrect) proofs of the following (false) statements:
 - i. All students at OSU have the same favorite food.
 - ii. All songs are in the same key.
 - iii. All rivers flow in the same direction.
 - iv. All mountains have the same height.
 - (b) Each of these proofs makes the same error. What is it?