EXAM 2 PRACTICE PROBLEMS

- 1. Let $x, y \in \mathbb{R}$. Prove the following.
 - (a) If x and y are rational, then x + y is rational.
 - (b) If x and y are rational, then xy is rational.
 - (c) If y is rational and $y \neq 0$, then 1/y is rational.
 - (d) If x and y are rational and $y \neq 0$, then x/y is rational.
 - (e) If x is rational and y is irrational, then x + y is irrational.
 - (f) If x is rational and y is irrational, then xy is irrational.
 - (g) If y is irrational, then 1/y is irrational. (Why is $y \neq 0$?)
 - (h) If x is rational and y is irrational, then x/y is irrational.
- 2. Give examples to prove the following statements.
 - (a) There exist irrational numbers x and y such that x + y is irrational.
 - (b) There exist irrational numbers x and y such that x + y is rational.
 - (c) There exist irrational numbers x and y such that xy is irrational.
 - (d) There exist irrational numbers x and y such that xy is rational.

3. Prove the following.

[HINT: Use the fact that any rational number can be written in lowest terms.]

- (a) $\sqrt{2}$ is irrational.
- (b) $\sqrt{3}$ is irrational.
- (c) $\sqrt{6}$ is irrational.
- (d) $\sqrt{2} + \sqrt{3}$ is irrational.
- 4. Let $d, n \in \mathbb{N}$. Use the definition of divisibility to show that if d|n, then $d \leq n$.
- 5. Let $a, b \in \mathbb{Z}$. Use the definition of divisibility to show that if a|b, then $a^2|b^2$.
- 6. Let a, b, q, r be integers such that a = bq + r. Prove that gcd(a, b) = gcd(b, r).
- 7. Let $d \in \mathbb{N}$ and $n \in \mathbb{Z}$. Show that if d|n and d|(n+1), then d = 1.

8. Let P be the sentence

For all $a, b \in \mathbb{Z}$, if a|b then $a|(b+5a^2)$.

Let Q be the sentence

For all $a, b \in \mathbb{Z}$, if a|b then $b + 5a^2$ is not prime.

- (a) Is the sentence P true? If so, provide a proof. If not, provide a counterexample.
- (b) Is the sentence Q true? If so, provide a proof. If not, provide a counterexample.
- 9. Use complete induction to prove that every natural number $n \ge 2$ is either prime or a product of primes.
- 10. Use complete induction to prove the following statement:

For every $n \in \mathbb{Z}$ such that $n \ge 14$, there exist non-negative integers a and b such that 3a + 7b = n.

11. Define the **Fibonacci numbers** F_1, F_2, F_3, \ldots by the recurrence relation

$$\begin{split} F_1 &= 1 \\ F_2 &= 1 \\ F_n &= F_{n-1} + F_{n-2} \qquad \text{for all } n \geq 3. \end{split}$$

- (a) Compute the first 10 Fibonacci numbers.
- (b) Use (ordinary) induction to prove that for all $n \in \mathbb{N}$,

$$F_1 + F_3 + F_5 + \dots + F_{2n-1} = F_{2n}.$$

- (c) Use complete induction to prove that for all $n \in \mathbb{N}$, $F_n < (5/3)^n$.
- (d) Let $a = \frac{1+\sqrt{5}}{2}$ and $b = \frac{1-\sqrt{5}}{2}$. Use complete induction to prove that for all $n \in \mathbb{N}, F_n = \frac{a^n b^n}{a b}$.
- 12. Find gcd(84, 135) in two ways:
 - By using the Euclidean algorithm.
 - By using prime factorization.

Which way do you prefer?

13. Use the prime factorizations

 $3,219,398 = 2 \cdot 7^3 \cdot 13 \cdot 19^2$ and $158,184 = 2^3 \cdot 3^2 \cdot 13^3$

to find gcd(3, 219, 398, 158, 184). Explain your reasoning.

- 14. (a) Use the Euclidean algorithm to compute gcd(30, 72).
 - (b) Find integers $x, y \in \mathbb{Z}$ such that 30x + 72y = 6.
 - (c) Do there exist integers $x, y \in \mathbb{Z}$ such that 30x + 72y = 18?
 - (d) Do there exist integers $x, y \in \mathbb{Z}$ such that 30x + 72y = 15?
- 15. Find integers x and y such that 162x + 31y = 1.
- 16. (a) Let $a \in \mathbb{N}$ and let p be a prime number. Prove that if p does not divide a, then gcd(p, a) = 1.
 - (b) Show that there exists $a \in \mathbb{N}$ such that 12 does not divide a and $gcd(12, a) \neq 1$.
- 17. Let $a \in \mathbb{N}$ and let p be a prime number. Prove that if $p|a^2$, then p|a. [HINT: Use unique prime factorization.]
- 18. Let n be an even integer. Prove that there exist unique integers $q, r \in \mathbb{Z}$ such that

$$n = 6q + r$$

and $r \in \{0, 2, 4\}$.

19. Let $m \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$. Prove that if

 $a \equiv b \mod m$ and $c \equiv d \mod m$,

then

$$a - c \equiv b - d \mod m.$$

- 20. Without using a calculator, find the natural number k such that $0 \le k \le 14$ and k satisfies the given congruence.
 - (a) $2^{75} \equiv k \pmod{15}$
 - (b) $6^{41} \equiv k \pmod{15}$
 - (c) $140^{874} \equiv k \pmod{15}$
- 21. Without using a calculator, show that 15 divides $37^{42} 38^{90}$.

22. Prove that

$$7^n \equiv 1 + 6n \mod 9$$

for every $n \in \mathbb{N}$.

23. Let A and B be the following sets.

$$A = \{n \in \mathbb{Z} \mid \text{there exists } k \in \mathbb{Z} \text{ such that } n = 4k + 2\}$$
$$B = \{n \in \mathbb{Z} \mid n \text{ is even}\}.$$

- (a) Prove that $A \subseteq B$.
- (b) Pove that $B \not\subseteq A$.
- $24. \ Let$

$$A = \{ x \in \mathbb{R} \mid x^2 \in \mathbb{Q} \}.$$

- (a) Prove that $\mathbb{Q} \subseteq A$.
- (b) Explain why $\mathbb{Q} \neq A$.
- 25. Let A and B be sets. Prove the following equalities of sets. (Recall that to prove two sets are equal, we must show one is a subset of the other and vice versa.)
 - (a) $A \setminus (A \setminus B) = A \cap B$.
 - (b) $(A \cup B) \setminus B = A \setminus B$.
 - (c) $(A \cap B) \setminus B = \emptyset$.
 - (d) $(A \cup B) \setminus (A \cap B) = (A \setminus B) \cup (B \setminus A).$

26. Let A and B be sets. Prove the following statements.

- (a) $A \subseteq B$ if and only if $A \cap B = A$
- (b) $A \subseteq B$ if and only if $A \setminus B = \emptyset$.
- (c) $A \subseteq B$ if and only if $A \cup B = B$.