Exam 2 Practice Problems

1. Let $x, y \in \mathbb{R}$. Prove the following.
(a) If x and y are rational, then $x+y$ is rational.
(b) If x and y are rational, then $x y$ is rational.
(c) If y is rational and $y \neq 0$, then $1 / y$ is rational.
(d) If x and y are rational and $y \neq 0$, then x / y is rational.
(e) If x is rational and y is irrational, then $x+y$ is irrational.
(f) If x is rational and y is irrational, then $x y$ is irrational.
(g) If y is irrational, then $1 / y$ is irrational. (Why is $y \neq 0$?)
(h) If x is rational and y is irrational, then x / y is irrational.
2. Give examples to prove the following statements.
(a) There exist irrational numbers x and y such that $x+y$ is irrational.
(b) There exist irrational numbers x and y such that $x+y$ is rational.
(c) There exist irrational numbers x and y such that $x y$ is irrational.
(d) There exist irrational numbers x and y such that $x y$ is rational.
3. Prove the following.
[Hint: Use the fact that any rational number can be written in lowest terms.]
(a) $\sqrt{2}$ is irrational.
(b) $\sqrt{3}$ is irrational.
(c) $\sqrt{6}$ is irrational.
(d) $\sqrt{2}+\sqrt{3}$ is irrational.
4. Let $d, n \in \mathbb{N}$. Use the definition of divisibility to show that if $d \mid n$, then $d \leq n$.
5. Let $a, b \in \mathbb{Z}$. Use the definition of divisibility to show that if $a \mid b$, then $a^{2} \mid b^{2}$.
6. Let a, b, q, r be integers such that $a=b q+r$. Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
7. Let $d \in \mathbb{N}$ and $n \in \mathbb{Z}$. Show that if $d \mid n$ and $d \mid(n+1)$, then $d=1$.
8. Let P be the sentence

For all $a, b \in \mathbb{Z}$, if $a \mid b$ then $a \mid\left(b+5 a^{2}\right)$.
Let Q be the sentence
For all $a, b \in \mathbb{Z}$, if $a \mid b$ then $b+5 a^{2}$ is not prime.
(a) Is the sentence P true? If so, provide a proof. If not, provide a counterexample.
(b) Is the sentence Q true? If so, provide a proof. If not, provide a counterexample.
9. Use complete induction to prove that every natural number $n \geq 2$ is either prime or a product of primes.
10. Use complete induction to prove the following statement:

For every $n \in \mathbb{Z}$ such that $n \geq 14$, there exist non-negative integers a and b such that $3 a+7 b=n$.
11. Define the Fibonacci numbers $F_{1}, F_{2}, F_{3}, \ldots$ by the recurrence relation

$$
\begin{aligned}
& F_{1}=1 \\
& F_{2}=1 \\
& F_{n}=F_{n-1}+F_{n-2} \quad \text { for all } n \geq 3
\end{aligned}
$$

(a) Compute the first 10 Fibonacci numbers.
(b) Use (ordinary) induction to prove that for all $n \in \mathbb{N}$,

$$
F_{1}+F_{3}+F_{5}+\cdots+F_{2 n-1}=F_{2 n}
$$

(c) Use complete induction to prove that for all $n \in \mathbb{N}, F_{n}<(5 / 3)^{n}$.
(d) Let $a=\frac{1+\sqrt{5}}{2}$ and $b=\frac{1-\sqrt{5}}{2}$. Use complete induction to prove that for all $n \in \mathbb{N}, F_{n}=\frac{a^{n}-b^{n}}{a-b}$.
12. Find $\operatorname{gcd}(84,135)$ in two ways:

- By using the Euclidean algorithm.
- By using prime factorization.

Which way do you prefer?
13. Use the prime factorizations

$$
3,219,398=2 \cdot 7^{3} \cdot 13 \cdot 19^{2} \quad \text { and } \quad 158,184=2^{3} \cdot 3^{2} \cdot 13^{3}
$$

to find $\operatorname{gcd}(3,219,398,158,184)$. Explain your reasoning.
14. (a) Use the Euclidean algorithm to compute $\operatorname{gcd}(30,72)$.
(b) Find integers $x, y \in \mathbb{Z}$ such that $30 x+72 y=6$.
(c) Do there exist integers $x, y \in \mathbb{Z}$ such that $30 x+72 y=18$?
(d) Do there exist integers $x, y \in \mathbb{Z}$ such that $30 x+72 y=15$?
15. Find integers x and y such that $162 x+31 y=1$.
16. (a) Let $a \in \mathbb{N}$ and let p be a prime number. Prove that if p does not divide a, then $\operatorname{gcd}(p, a)=1$.
(b) Show that there exists $a \in \mathbb{N}$ such that 12 does not divide a and $\operatorname{gcd}(12, a) \neq 1$.
17. Let $a \in \mathbb{N}$ and let p be a prime number. Prove that if $p \mid a^{2}$, then $p \mid a$.
[HINT: Use unique prime factorization.]
18. Let n be an even integer. Prove that there exist unique integers $q, r \in \mathbb{Z}$ such that

$$
n=6 q+r
$$

and $r \in\{0,2,4\}$.
19. Let $m \in \mathbb{N}$ and $a, b, c, d \in \mathbb{Z}$. Prove that if

$$
a \equiv b \quad \bmod m \quad \text { and } \quad c \equiv d \quad \bmod m
$$

then

$$
a-c \equiv b-d \quad \bmod m .
$$

20. Without using a calculator, find the natural number k such that $0 \leq k \leq 14$ and k satisfies the given congruence.
(a) $2^{75} \equiv k(\bmod 15)$
(b) $6^{41} \equiv k(\bmod 15)$
(c) $140^{874} \equiv k(\bmod 15)$
21. Without using a calculator, show that 15 divides $37^{42}-38^{90}$.
22. Prove that

$$
7^{n} \equiv 1+6 n \quad \bmod 9
$$

for every $n \in \mathbb{N}$.
23. Let A and B be the following sets.

$$
\begin{aligned}
& A=\{n \in \mathbb{Z} \mid \text { there exists } k \in \mathbb{Z} \text { such that } n=4 k+2\} \\
& B=\{n \in \mathbb{Z} \mid n \text { is even }\} .
\end{aligned}
$$

(a) Prove that $A \subseteq B$.
(b) Pove that $B \nsubseteq A$.
24. Let

$$
A=\left\{x \in \mathbb{R} \mid x^{2} \in \mathbb{Q}\right\} .
$$

(a) Prove that $\mathbb{Q} \subseteq A$.
(b) Explain why $\mathbb{Q} \neq A$.
25. Let A and B be sets. Prove the following equalities of sets. (Recall that to prove two sets are equal, we must show one is a subset of the other and vice versa.)
(a) $A \backslash(A \backslash B)=A \cap B$.
(b) $(A \cup B) \backslash B=A \backslash B$.
(c) $(A \cap B) \backslash B=\varnothing$.
(d) $(A \cup B) \backslash(A \cap B)=(A \backslash B) \cup(B \backslash A)$.
26. Let A and B be sets. Prove the following statements.
(a) $A \subseteq B$ if and only if $A \cap B=A$
(b) $A \subseteq B$ if and only if $A \backslash B=\varnothing$.
(c) $A \subseteq B$ if and only if $A \cup B=B$.

